


TRADES, QUOTES AND PRICES

The widespread availability of high-quality, high-frequency data has revolutionised the
study of financial markets. By describing not only asset prices, but also market participants’
actions and interactions, this wealth of information offers a new window into the inner
workings of the financial ecosystem. In this original text, the authors discuss empirical
facts of financial markets and introduce a wide range of models, from the micro-scale
mechanics of individual order arrivals to the emergent, macro-scale issues of market
stability. Throughout this journey, data is king. All discussions are firmly rooted in the
empirical behaviour of real stocks, and all models are calibrated and evaluated using
recent data from NASDAQ. By confronting theory with empirical facts, this book for
practitioners, researchers and advanced students provides a fresh, new and often surprising
perspective on topics as diverse as optimal trading, price impact, the fragile nature of
liquidity, and even the reasons why people trade at all.

J E A N - P H I L I P P E B O U C H AU D is a pioneer in Econophysics. He co-founded
the company Science & Finance in 1994, which merged with Capital Fund Management
(CFM) in 2000. In 2007 he was appointed as an adjunct Professor at École Polytechnique,
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“Leading physicist and hedge fund manager Jean-Philippe Bouchaud and his
co-authors have written an impressive book that no serious student of market
microstructure can afford to be without. Simultaneously quantitative and highly
readable, Trades, Quotes and Prices presents a complete picture of the topic,
from classical microstructure models to the latest research, informed by years of
practical trading experience.”
Jim Gatheral, Baruch College, CUNY

“This book describes the dynamics of supply and demand in modern financial
markets. It is a beautiful story, full of striking empirical regularities and elegant
mathematics, illustrating how the tools of statistical physics can be used to explain
financial exchange. This is a tour de force with the square root law of market
impact as its climax. It shows how institutions shape human behaviour, leading to
a universal law for the relationship between fluctuations in supply and demand and
their impact on prices. I highly recommend this to anyone who wants to see how
physics has benefited economics, or for that matter, to anyone who wants to see a
stellar example of a theory grounded in data.”
Doyne Farmer, University of Oxford

“This is a masterful overview of the modern and rapidly developing field of market
microstructure, from several of its creators. The emphasis is on simple models
to explain real and important features of markets, rather than on sophisticated
mathematics for its own sake. The style is narrative and illustrative, with extensive
references to more detailed work. A unique feature of the book is its focus on
high-frequency data to support the models presented. This book will be an essential
resource for practitioners, academics, and regulators alike.”
Robert Almgren, New York University and Quantitative Brokers
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Preface

The Microstructure Age

In recent years, the availability of high-quality, high-frequency data has revolu-
tionised the study of financial markets. By providing a detailed description not
only of asset prices, but also of market participants’ actions and interactions, this
wealth of information offers a new window into the inner workings of the financial
ecosystem. As access to such data has become increasingly widespread, study of
this field – which is widely known as market microstructure – has blossomed,
resulting in a growing research community and growing literature on the topic.

Accompanying these research efforts has been an explosion of interest from
market practitioners, for whom understanding market microstructure offers many
practical benefits, including managing the execution costs of trades, monitoring
market impact and deriving optimal trading strategies. Similar questions are of
vital importance for regulators, who seek to ensure that financial markets fulfil
their core purpose of facilitating fair and orderly trade. The work of regulators has
come under increasing scrutiny since the rapid uptake of high-frequency trading,
which popular media outlets seem to fear and revere in ever-changing proportions.
Only with a detailed knowledge of the intricate workings of financial markets can
regulators tackle these challenges in a scientifically rigorous manner.

Compared to economics and mathematical finance, the study of market
microstructure is still in its infancy. Indeed, during the early stages of this project,
all four authors shared concerns that the field might be too young for us to be
able to produce a self-contained manuscript on the topic. To assess the lay of
the land, we decided to sketch out some ideas and draft a preliminary outline.
In doing so, it quickly became apparent that our concerns were ill-founded, and
that although far from complete, the story of market microstructure is already
extremely compelling. We hope that the present book does justice both to the main
developments in the field and to our strong belief that they represent a truly new
era in the understanding of financial markets.

xiii



xiv Preface

What is Market Microstructure?

Before we embark on our journey, we pause for a moment to ask the question:
What is market microstructure? As the name suggests, market microstructure
is certainly concerned with the details of trading at the micro-scale. However,
this definition does little justice to the breadth of issues and themes that this
field seeks to address. Most notably, the field also provides insight into the
emergence of complex meso- and macro-scale phenomena that have been widely
reported but poorly understood for decades. Therefore, we argue that defining
market microstructure by limiting its scope to the atomic scale is not the correct
approach.

One fundamental decision when embarking on a first-principles analysis of
financial markets is whether to start by studying prices, and to dive down
into the underlying mechanics, or to start by first analysing the micro-scale
actions of individual traders, and to work from the bottom up. We define market
microstructure as the field of choosing the latter path. In this way, we regard price
formation not as a model input, but rather as a process that emerges from the
complex interactions of many smaller parts.

Of course, the story of market microstructure is only just beginning. In the
context of standard economic theory, many of the ideas that emerge from this
bottom-up approach are currently deeply contentious. Throughout the book, we
highlight many cases where the results that we present run contrary to the
conventional wisdom about financial markets. We do this not in an attempt to
attack other methodologies, but rather in the spirit of scientific discovery. We
strongly believe that only by laying bare the hard facts for further debate will true
understanding grow and mature.

Aim and Scope of the Book

This book lies somewhere between being theoretical and practical. In all the
material that we present, we attempt to maintain a balance between being
scientifically rigorous and avoiding overly heavy exposition. For the most part,
we adopt a narrative style with informal discussions. This tone may come as
something of a surprise to readers more familiar with traditional texts on financial
markets, but we believe that a different approach is needed to present this material
in an accessible and understandable way.

This is not an economics book, nor is it a mathematical finance book. Most
of the material requires only a minimal level of mathematical background. In the
few cases where we use more sophisticated techniques, we aim to provide the
reader with sufficient details to perform all of the calculations that we present.



Preface xv

We neither propose nor prove theorems regarding how markets should behave.
Instead, we focus first and foremost on the data, and place strong emphasis on how
the various learnings from the different chapters and sub-narratives fit together to
form a cohesive whole.

We divide the book into nine different parts. The early parts deal with more
introductory material on the foundations of market microstructure, while the
latter parts deal with more advanced material and practical applications. Each
part consists of a collection of related chapters with a shared narrative and
shared models. Each chapter starts with a brief introduction and concludes with
a non-technical summary of the main points, which we call the “Take-Home
Messages”. We hope that this format will help our readers navigate both familiar
and unfamiliar material quickly and easily.

Interspersed with the main text, we also provide details on some advanced
topics, which give a more technical foundation for the general topics addressed
in the chapter. To separate this more advanced material, we present it in a smaller
font and with an indented layout. These advanced sections can be skipped without
detracting from the overall narrative of the book.

We have designed this book to be self-contained, but given the huge number of
publications on many of the topics that we discuss, we cannot possibly do justice
to the full wealth of work in the field. To offer some guidance in navigating the
wider literature, we provide many citations throughout the text. We do this in two
ways: as footnotes in specific discussions, and as short bibliographies at the end
of each chapter. In both cases, the references that we have chosen are the result
of a subjective selection, and our choices are certainly far from exhaustive. We
therefore strongly encourage readers to venture far and wide among the references
contained within the works that we cite.

Data

High-quality data is the cornerstone of market microstructure. Throughout the
book, the vast majority of data analysis that we perform is based on the
LOBSTER database, which provides a very detailed, event-by-event description
of all micro-scale market activity for each stock listed on NASDAQ. We discuss
the LOBSTER data in Appendix A.1.

When doing applied science, we firmly believe that there is no substitute for
hands-on practical experience. Therefore, we also provide our readers with the
opportunity to try all of these calculations first-hand, by downloading a data set
from LOBSTER. To do so, simply visit:

https://lobsterdata.com/tradesquotesandprices
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The password for the files is “btumohul” (with no quotation marks). Full
information about the data can be found on the website. We would like to
thank both LOBSTER and NASDAQ for sharing this data with our readers. We
hope that it serves to stimulate many future explorations in the field of market
microstructure.
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How and Why Do Prices Move? 3

Introduction

At the heart of all financial markets lies a common ingredient: people. These
people act in their best interests, given their environment and the set of rules that
govern it. As we know from many other aspects of life, human behaviour is full of
complexity and surprises. Therefore, understanding financial markets promises to
be a long and colourful journey.

Although the actions of a single person may be difficult to predict, the
beauty of statistics is that large-scale systems populated by many different
people often exhibit robust regularities that transcend individual behaviours. This
property appears in countless manifestations in financial markets. An important
first example is the way in which different agents (and their models) interpret
“information” – whatever that might be. Predicting the direction of price changes
has always proven to be difficult, but one might still aim to grasp some fundamental
understanding of other market properties, such as volatility or liquidity, due to
the strong regularities that emerge from the diverse actions and reactions of the
ensemble.

Of course, there is no good modelling without a proper understanding of
a system’s rules – and of what motivates agents to play the game to begin
with. In this first part of the book, we will address some fundamental questions
about trading in financial markets. How do modern markets operate? Who is
playing the game? What are their motivations? What challenges do they face?
How do they act and interact? And how does all of this affect liquidity and
volatility?

In a deep-dive into continuous-time double auctions, we will emphasise
the ever-evolving nature of financial markets, and will therefore underline the
ever-present need for up-to-date data. We will also touch on some universalities
that have transcended time periods and geographical areas – from the subtle nature
of the so-called “liquidity game” to the consistent patterns that emerge from it.
How does market liquidity look at a zoomed-in and zoomed-out scale? Why is it
so thin? And how do market participants’ actions affect liquidity, and therefore
prices?

Most importantly, we will begin our discussion about what really happens
when people trade – that is, the empirical facts of financial markets. We will
introduce the celebrated idea of the Brownian motion, but we will also highlight
the limitations of this approach when it comes to modelling prices. For example,
we will discuss how price returns exhibit fat tails and are prone to extreme
jumps, and how activity is highly clustered in time, while the price is still linearly
unpredictable at all scales.
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4 How and Why Do Prices Move?

How should we make sense of all these concepts, ideas and facts? Market
microstructure is so rich that the scientific community has designed many different
approaches and viewpoints, with economists and physicists typically residing at
two opposite ends of the spectrum. As we will see, all such approaches have their
limitations and puzzles. Developing a coherent understanding of financial markets
is a long and complex endeavour – which we embark upon now.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316659335.002
https://www.cambridge.org/core


1

The Ecology of Financial Markets

Buyer: How much is it?
Seller: £1.50.
Buyer: OK, I’ll take it.
Seller: It’s £1.60.
Buyer: What? You just said £1.50.
Seller: That was before I knew you wanted it.
Buyer: You cannot do that!
Seller: It’s my stuff.
Buyer: But I need a hundred of those!
Seller: A hundred? It’s £1.70 apiece.
Buyer: This is insane!
Seller: It’s the law of supply and demand, buddy. You want it or not?

(Translated from “6”, by Alexandre Laumonier)

A market is a place where buyers meet sellers to perform trades, and where prices
adapt to supply and demand. This time-worn idea is certainly broadly correct,
but reality is rather more intricate. At the heart of all markets lies a fundamental
tension: buyers want to buy low and sellers want to sell high. Given these opposing
objectives, how do market participants ever agree on a price at which to trade?

As the above dialogue illustrates, if a seller was allowed to increase the price
whenever a buyer declared an interest to buy, then the price could reach a level
so high that the buyer was no longer interested – and vice-versa. If traders always
behaved in this way, then conducting even a single transaction would require a long
and hard negotiation. Although this might be feasible if trades only occurred very
infrequently, modern financial markets involve many thousands of transactions
every single day. Therefore, finding a mechanism to conduct this process at scale,
such that huge numbers of buyers and sellers can coordinate in real time, is an
extremely complex problem.

5



6 The Ecology of Financial Markets

Centuries of market activity have produced many possible solutions, each with
their own benefits and drawbacks. Today, most markets implement an electronic,
continuous-time double-auction mechanism based on the essential idea of a limit
order book (LOB), which we introduce in Chapter 3. However, as a brief glance
at the financial press will confirm, ensuring market stability and “fair and orderly
trading” is still elusive, and it remains unclear whether modern electronic markets
are any less prone to serious problems than old-fashioned trading pits.

Given the tremendous impact of the digital revolution on society as a whole, why
has the advent of computerised trading not solved these age-old problems once
and for all? One possible answer is that trading intrinsically leads to instabilities.
This viewpoint, which is increasingly supported by a growing body of empirical
evidence, will lie at the very heart of our present journey into financial markets.

1.1 The Rules of Trading

We begin our discussion of financial markets by exploring the mechanisms that
allow trading to take place, from old-style auctions to modern electronic markets.

1.1.1 The Walrasian Auction

As we emphasised above, markets are attempts to solve the seemingly impossible
problem of allowing trades between buyers, who want to buy at an ever-lower
price, and sellers, who want to sell at an ever-higher price. One possible way to
solve this never-ending back-and-forth problem is to require that whenever a trader
specifies a price, he or she makes a firm commitment to trade. This simple idea
forms the heart of a classic market organisation called a Walrasian auction.1

In a Walrasian auction, traders communicate their buying or selling desires to
an auctioneer, who collects and records this information. Buyers are invited to post
bids that state the maximum price at which they are willing to buy, while sellers
are invited to post offers that state the minimum price at which they are willing
to sell. When posting bids or offers, each trader enters into a firm commitment to
trade if he or she wins the auction. In the language of modern financial markets,
this commitment is called liquidity provision.

A Walrasian auctioneer gathers these bids and offers into an order book. This
order book describes the quantities that are available for purchase or sale at each
specified price, as declared by the market participants. In a Walrasian auction,
the auctioneer keeps the order book invisible, so that market participants cannot
change their minds by observing what others are posting.

1 The concept of the Walrasian auction first appeared as the design of French mathematical economist Léon
Walras (1834–1910), as a gambit to understand how prices can reach their equilibrium such that supply matches
demand.
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At some instant of time, which can be set by the will of the auctioneer or decided
at random, the auctioneer sets a transaction price p∗ such that the total volume
exchanged at that price is maximised. The transaction price p∗ is the only price
such that no buyers and no sellers remain unsatisfied after the transaction, in the
sense that all remaining buyers have a limit price below p∗ and all remaining sellers
have a limit price above p∗. For a given price p, let V+(p) denote the total volume
of buy orders at price p and let V−(p) denote the total volume of sell orders at price
p. Formally, the supply curve S (p) is the total volume of sell orders with a price
less than or equal to p, and the demand curve D(p) is the total volume of buy
orders with a price greater than or equal to p. In a discrete setting, the supply and
demand at a given price p can be written as

S (p) =
∑
p′≤p

V−(p′); (1.1)

D(p) =
∑
p′≥p

V+(p′). (1.2)

In words, S (p) represents the total volume that would be available for purchase
by a buyer willing to buy at a price no greater than p. Similarly, D(p) represents
the total volume that would be available for sale by a seller willing to sell at a price
no less than p.

For a given price p, the total volume of shares exchanged is given by

Q(p) =min
[
D(p),S (p)

]
, (1.3)

because the volume cannot exceed either the volume for purchase or the volume for
sale. As is clear from Equations (1.1) and (1.2), S (p) is an increasing function of p
and D(p) is a decreasing function of p (see Figure 1.1). Intuitively, for a transaction
to occur, the price must be a compromise between the buyers’ and sellers’ wishes.
If the price is too high, buyers will be disinterested; if the price is too low, sellers
will be disinterested. Therefore, the auctioneer must find a compromise price p∗

such that
Q(p∗) =max

p
min

[
D(p),S (p)

]
. (1.4)

Note that Q(p∗) > 0 if and only if at least one pair of buy and sell orders overlap,
in the sense that the highest price offered among all buyers exceeds the lowest
price offered among all sellers. Otherwise, Q(p∗) = 0, so p∗ is ill-defined and no
transactions take place.

If Q(p∗) > 0, and in the theoretical case where D(p) and S (p) are continuous
in p, the maximum of Q(p) must occur when supply and demand are equal. The
price p∗ must therefore satisfy the equality

D(p∗) =S (p∗). (1.5)
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Figure 1.1. Illustration of the (increasing) supply curve S (p) and (decreasing)
demand curve D(p) as a function of price p. According to Walras’ law, the
intersection of these curves defines the clearing price p∗ and the total exchanged
volume Q∗.

When the set of possible prices is restricted to a discrete price grid (as is the case
in most markets), it is possible, and indeed common, that Equation (1.5) is not
satisfied by the choice of p∗ that maximises the total volume of trade. When this
happens, some buyers or sellers remain unsatisfied. In this case, determining which
of the possible buyers or sellers at a given price are able to trade requires a set of
priority rules, which we discuss in detail in Section 3.2.1.

1.1.2 Market-Makers

In practice, Walrasian auctions are unsatisfactory for one major reason: they do
not allow for any coordination between buyers and sellers. Therefore, a Walrasian
auction might end in one of the following two scenarios:

(i) All buyers and sellers are unreasonably greedy, such that no buy and sell orders
overlap and Q(p∗)= 0. In this case, there does not exist a price p∗ at which any
pair of traders is willing to trade, so no transactions can take place.

(ii) One side is unreasonably greedy while the other side is not. For example, the
sellers might be unreasonably greedy while the buyers are not, which would
result in a sudden increase in p∗ and a very small transacted volume Q(p∗). A
similar situation can also arise if some external event temporarily causes the
number of buyers to far exceed the number of sellers, or vice-versa.

Before the advent of electronic trading, the solution that most markets adopted
to remedy this problem was to replace the Walrasian auctioneer (who seeks only
to connect buyers and sellers at a reasonable price) with a special category of
market participants called market-makers (or specialists). These special market
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participants were legally obliged to maintain a fair and orderly market, in exchange
for some special privileges. To achieve their goals in the above auction setting,
market-makers perform two tasks: quoting and clearing.

• Quoting: At all times, a market-maker must provide a bid-price b, with
a corresponding bid-volume Vb, and an ask-price a, with a corresponding
ask-volume Va. As long as they are not modified by the market-maker, these
quotes are binding, in the sense that the market-maker must execute any
incoming sell order with volume less than or equal to Vb at the price b, and
any incoming buy order with volume less than or equal to Va at the price a.

• Clearing: Once buyers and sellers have submitted orders that specify a price
and a volume, the market-maker decides on a price p∗ that makes the number of
unsatisfied orders as small as possible. Satisfied orders are cleared at price p∗.

A market-maker’s quotes play the role of signalling a sensible price to the
whole market, and thereby help other market participants to coordinate around
a reasonable price. This point is illustrated by the retail foreign exchange (FX)
market, in which retailers publicly display their buy and sell prices for a range of
different currencies. At any time, if someone is uncertain about the value of the
US dollar, then a simple way to gain a reasonably clear picture is to look at the
buy and sell prices posted by a currency retailer. In this way, the retailer provides
public information about their perception of the price of this asset.

Similarly to a Walrasian auction, buyers and sellers submit orders that specify
a price and a volume and that accumulate in a public buy order book V+(p) and
a public sell order book V−(p). Because market-makers post their quotes publicly,
these new orders typically scatter around b (for buys) and a (for sells). At some
time chosen by the market-maker, he or she computes the solution (or, in a discrete
setting, the closest permissible discrete value) of the equation∑

p′≥p∗
V+(p′) =

∑
p′≤p∗

V−(p′), (1.6)

where V± also includes the market-maker’s initial quotes at the bid and ask plus any
additional buy or sell volume that he or she chooses to add just before the auction
(e.g. to manage risk, to manage inventory, or to prevent large excursions of the
price if demand temporarily outstrips supply, or vice-versa). If the market-maker
is satisfied with p∗ and the corresponding volume Q(p∗), then the relevant
transactions occur at this price. If p∗ > a, this signals that the buy pressure was
strong and that the market-maker chose not to add more sell volume to compensate.
Note that p∗ > a can only happen if one or more buyers posted a limit price above
the ask, and therefore have a strong urge to buy. In this case, it is likely that the
market-maker will increase the quoted prices for the next auction, in an attempt to
rebalance supply and demand. By symmetry, similar arguments follow for the case
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p∗ < b. If b ≤ p∗ ≤ a, then the market is relatively balanced, in the sense that every
transaction has occurred at a price better than or equal to the posted quotes.

In a market where all trade is facilitated by designated market-makers,
participants can be partitioned into one of two categories: the market-makers, who
offer trading opportunities to the rest of the market, and the other traders, who
have the opportunity to accept them. Traditionally, these categories are named
to reflect their members’ contribution to the flow of liquidity: market-makers are
called liquidity providers; the other traders are called liquidity takers.

1.1.3 Electronic Markets and Continuous-Time Double Auctions

Over time, markets have evolved away from appointing designated market-makers.
Today, most liquid markets – including stocks, futures, and foreign exchange – are
electronic, and adopt a continuous-time double auction mechanism using a limit
order book (LOB), in which a transaction occurs whenever a buyer and a seller
agree on a price.

LOBs require neither a Walrasian auctioneer nor designated market-makers to
facilitate trade.2 LOBs are updated in real time, and are observable by all traders.
They therefore form an important part of the information sets used by traders
when deciding how to act. As we discuss at many points throughout the book, the
intertwined, interacting sequences of order-flow events generate transactions and
price changes in an LOB. Analysing these sequences of events provides a direct
route to quantifying and understanding price dynamics “from the bottom up”, and
therefore lies at the very heart of modern market microstructure.

1.2 The Ecology of Financial Markets

For a trade to take place, a buyer and a seller must agree on a price. Assuming that
both parties do so willingly, it seems reasonable to insist that any trader conducting
a trade must do so without feeling regrets. However, since assets are quoted every
day (and nowadays are even quoted continuously during the day), at least one of
the counterparties to a trade will have regrets as soon as the price moves, because
he or she could have obtained a better price by waiting. So why do traders trade at
all? Answering this puzzling question first requires a detailed understanding of the
ecology of financial markets.

1.2.1 Trades and Information

Most attempts at explaining why market participants (other than market-makers)
trade distinguish between two different types of activity:

2 Interestingly, however, a category of market participants, who are still called market-makers, perform the useful
function of providing some of the liquidity in an LOB. We return to this discussion in Section 1.2.4.
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• Informed trades are attributed to sophisticated traders with information about
the future price of an asset, which these traders buy or sell to eke out a profit.

• Uninformed trades are attributed either to unsophisticated traders with no
access to (or the inability to correctly process) information, or to liquidity trades
(e.g. trades triggered by a need for immediate cash, a need to reduce portfolio
risk or a need to offload an inventory imbalance). These trades are often called
noise trades, because from an outside perspective they seem to occur at random:
they do not correlate with future price changes and they are not profitable on
average.

In some cases, classifying a trade as informed is relatively straightforward. One
clear example is insider trading. For example, consider a company with a stock
price of $95 at some time t. If an insider hears that a large corporation seeks to
make a takeover bid by offering $100 per share at some future time t+T , and that
this information will not become public until time t+T , then the insider could buy
some shares at the current value of $95 and realise a near-certain profit of $5 per
share at time t + T . Deterministic arbitrage, such as exploiting the mispricing of
derivative products, could also fall into the category of informed trading.

In most cases, however, this seemingly intuitive partitioning of trades as
informed or uninformed suffers from a problem: information is difficult to
measure – and even to define. For example, is an observation of another trade itself
information? If so, how much? And how strongly might this impact subsequent
market activity? For most large-cap US stocks, about 0.5% of the market
capitalisation changes hands every day. Given that insider trading is prohibited
by law, can a significant fraction of this vast market activity really be attributed to
informed trades of the type described above?

1.2.2 Statistical Information

A less extreme (and perhaps more realistic) view of information can be framed
in statistical terms: an informed trade can be defined as a trade whose ex-ante
expected profit over some time horizon T is strictly positive, even after including
all costs. In other words, information is tantamount to some ability to predict future
price changes, whatever the reasons for these changes.

When speaking about statistical information, it is customary to decompose
trading strategies into two categories:

• Fundamental analysis attempts to decide whether an asset is over-priced
or under-priced. These strategies seek to use quantitative metrics, such as
price-to-earnings ratios, dividend yields, macroeconomic indicators, information
on the health and growth of a specific company, and even more qualitative
indicators such as the charisma of the CEO.
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• Quantitative analysis (or technical analysis) attempts to predict price move-
ments by identifying price patterns, some of which are based on solid statistical
evidence (such as price trends or mean-reversion), while others are less so
(such as chartists’ “head and shoulders” distributions, or price “support” and
“resistance” levels).

Empirical data suggests that some of these signals are indeed correlated with
future price changes, but that this correlation is very weak, in the sense that the
dispersion of future price changes is much larger than the mean predicted price
change. The time scale of these strategies is also extremely heterogeneous, and
spans from months (or even years) for traditional long-only pension funds to just
a few minutes (or even seconds) for some intra-day strategies.

In summary, we should expect that informed trades are either very rare and
very successful (but unlawful!), like the insider example, or are more common
but with weak information content and a low degree of individual success, like
statistical arbitrage. Given that very successful trades occur rarely, if many traders
really are informed, then the vast majority of such trades must be of the latter
type. These trades can be based on information from any combination of a large
number of diverse sources, each of which typically provides weak insights into
future prices. In practice, this diversity of information signals is reflected in the
diversity of market participants, who have different trading strategies, motives and
time horizons – from long-term pension funds to day traders, hedgers, and even
high-frequency trading (HFT).

1.2.3 To Trade, or Not To Trade?

Despite the prominence of arbitrage strategies, prices are notoriously hard to
predict. In fact, as we will illustrate in Chapter 2, prices are close to being
martingales, in the sense that the best estimate of the future price is simply the
current price. This implies that the real information contained in the signals used by
traders or investors is extremely weak. Given that trading entails considerable costs
(such as brokerage fees, transaction fees and price impact, which we will discuss in
detail throughout the book), the overall nagging feeling is that speculative traders
trade too much, probably as a result of overestimating the predictive power of their
signals and underestimating the costs of doing so.3

Why do traders behave in this way? One possible explanation is that they are
blinded by the prospect of large gains and fail to recognise the true costs of their
actions. Another is that it is extremely difficult to separate skill from luck in trading
performance: even when trading with no information, a lucky trade can lead to a
substantial profit. For example, if asset prices followed a simple symmetric random

3 See, e.g., Odean, T. (1999). Do investors trade too much? American Economic Review, 89, 1279–1298.
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walk, then in the absence of trading costs, any trade initiated at time t would have
a 50% chance of being profitable at time t+T , whatever T !

Using numbers from real markets illustrates that evaluating real trading
strategies is very difficult. Given a stock with an annual volatility of 15% and a
reported annual return of 5%, it would take almost T = 9 years to test whether
the actual return was statistically significantly different from zero at the one-sigma
level.4 Therefore, it can take a very long time to notice that a seemingly lucrative
trading strategy is actually flawed, or vice-versa.

In summary, classifying trades is much less straightforward than the clas-
sical “informed-versus-uninformed” dichotomy might suggest. Although truly
informed trades (such as insider trades) and truly uninformed trades (such
as hedging or portfolio-balancing trades) likely both exist, between these two
extremes lies a broad spectrum of other trades based on some sort of information
that is difficult to define and even harder to measure. This lack of high-quality
information also provides a possible explanation for why the ecology of modern
financial markets is so complex, and contains many different types of traders
seeking to earn profits on many different time horizons, despite the “no-trade”
situation that we described earlier in this section. This important observation will
be an overarching theme throughout the book.

1.2.4 Liquidity Providers: The Modern-Day Market-Makers

Most strategies and trading techniques attempt to earn a profit by forecasting the
future price of an asset, then buying or selling it accordingly. But much as in
the old days, financial markets can only function if some participants commit to
providing liquidity. In the ecology of financial markets, liquidity providers offer to
both purchase and sell an asset, and seek to earn the difference between the buy
and sell price. Traders who implement this strategy in modern markets are still
called “market-makers”. In contrast to those in older markets, however, modern
market-makers are not specifically designated market participants with special
privileges. Instead, modern markets enable anyone to act as a market-maker by
offering liquidity to other market participants.

Market-makers typically aim to keep their net inventory as close to zero as
possible, so as not to bear the risk of the asset’s price going up or down. Their
goal is to earn a profit by buying low (at their bid-price b) and selling high (at their
ask-price a), and therefore earning the bid–ask spread

s := a− b (1.7)

for each round-trip trade.

4 The order of magnitude of the time required is given by the square of the ratio of these two numbers: (15/5)2 = 9
years.
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An important consequence of the widespread use of LOBs in modern financial
markets is a blurring of the lines between liquidity providers and liquidity takers.
For example, if one market-maker noticed another market-maker offering to
trade at a very attractive price, it would be illogical not to transact against
this price, and to therefore act as a liquidity taker. Indeed, many successful
high-frequency market-makers also implement sophisticated short-term prediction
tools and exploit profitable high-frequency signals. Similarly, market participants
who usually act as liquidity takers might instead choose to provide liquidity if they
notice the bid–ask spread to be particularly wide.

Despite this emerging complexity of modern markets, the simple separation
of market participants into two classes – speculators (or liquidity takers), who
typically trade at medium-to-low frequencies, and market-makers, who typically
trade at high frequencies – is a useful first step towards understanding the
basic ecology of financial markets. As we will illustrate throughout the book,
considering the interactions and tensions between these two groups provides useful
insights into the origins of many interesting phenomena.

1.3 The Risks of Market-Making

Throughout this chapter, we have gradually built up a picture of the basic ecology
of modern financial markets: market-makers offer opportunities to buy and/or sell,
with the aim of profiting from round-trip trades, while speculators buy or sell
assets, with the aim of profiting from subsequent price changes.

Based on this simple picture, it seems that market-makers have a much more
favourable position than speculators. If speculators make incorrect predictions
about future price moves, then they will experience losses, but they will still
trade with market-makers, who will therefore still conduct round-trip trades. In
this simplistic picture, speculators bear the risk of incorrect predictions, while
market-makers seemingly always make a profit from the bid–ask spread. Is it really
the case that market-makers can earn risk-free profits?

1.3.1 Adverse Selection

The simple answer to the last question is: no. Market-makers also experience
several different types of risk. Perhaps the most important is adverse selection
(also called the “winner’s curse” effect). Adverse selection results from the fact
that market-makers must post binding quotes, which can be “picked off” by
more informed traders who see an opportunity to buy low or to sell high. This
informational asymmetry is a fundamental concern for market-makers and is the
final piece of the financial ecosystem that we consider in this chapter.
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For a market-maker, the core question (to which we will return in Chapter 16)
is how to choose the values of b and a. If the values of b and a remain constant
at all times, then the market-maker always earns a profit of s for each round-trip
(buy and sell) trade. All else being equal, the larger the value of s, the larger the
profit a market-maker earns per trade. However, the larger the value of s, the less
attractive a market-maker’s buy and sell prices are to liquidity takers.

In situations where several different market-makers are competing, if one
market-maker tries to charge too wide a spread, then another market-maker will
simply undercut these prices by stepping in and offering better quotes. Most
modern financial markets are indeed highly competitive, which prevents the spread
from becoming too large. But why does this competition not simply drive s to zero?

Consider a market-maker trading stocks of a given company by offering a buy
price of b = $54.50 and a sell price of a = $55.50. If the buy and sell order flow
generated by liquidity takers was approximately balanced, then the market-maker
would earn s = $1.00 per round-trip trade. If, however, an insider knows that
the given company is about to announce a drop in profits, they will revise their
private valuations of the stock downwards, say to $50.00. If the market-maker
continues to offer the same quotes, then he or she would experience a huge influx
of sell orders from insiders, who regard selling the stock at $54.50 to be extremely
attractive. The market-maker would therefore quickly accumulate a large net buy
position by purchasing more and more stocks at the price $54.50, which will
likely be worth much less soon after, generating a huge loss. This is adverse
selection.

Although the above example uses a strongly imbalanced order flow to provide a
simple illustration, market-makers face the same problem even when facing more
moderate imbalances in order flow. If a market-maker holds b and a constant in
the face of an imbalanced order flow, then he or she will accumulate a large net
position in a short time, with a high probability of being on the wrong side of the
trade. As we will discuss at several times throughout the book, market-makers
compensate for this potential loss by charging a non-zero spread – even in
situations where market-making is fiercely competitive (see Chapter 17).

1.3.2 Price Impact

To mitigate the risk of being adversely selected, market-makers must update their
values of b and a to respond to their observations of order-flow imbalance. If
a market-maker receives many more buy orders than sell orders, then he or she
can attempt to reduce this order-flow imbalance by increasing the ask-price a (to
dissuade future buyers), increasing the bid-price b (to encourage future sellers), or
both. Similarly, if a market-maker receives many more sell orders than buy orders,
then he or she can attempt to reduce this order-flow imbalance by decreasing b,
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decreasing a, or both. An important consequence of this fact is that trades have
price impact: on average, the arrival of a buy trade causes prices to rise and the
arrival of a sell trade causes prices to fall. This is precisely what the spread s
compensates for.

More formally, let

m :=
a+ b

2
(1.8)

denote the mid-price, and let E[m∞] denote the expected future value of m. Since
a (possibly small) fraction of trades are informed, then if we observe a buy trade,
we should expect the future value of m to be greater than the current value of m.
Similarly, if we observe a sell trade, then we should expect the future value of m
to be less than the current value of m. To express this mathematically, let ε denote
the sign of the trade, such that ε = +1 for a buy trade and ε = −1 for a sell trade.
Let R∞ denote the expected long-term impact of a trade,

R∞ := E [ε · (m∞ −m)] . (1.9)

Because on average the arrival of a buy trade causes m to increase and the arrival
of a sell trade causes m to decrease, it follows from the definition of ε that R∞ > 0.

The concept of price impact is central to the understanding of financial markets,
and will be discussed many times throughout this book. The above introduction is
highly simplified, but it already provides a quantitative setting in which to consider
the problem faced by market-makers. Recall that if b and a remain constant, then
a market-maker earns s/2 for each of the two legs of a round-trip trade. Since
on average the price moves in an adverse direction by an amount R∞ > 0, a
market-maker’s net average profit per trade (in this highly simplified framework)
is given by s/2−R∞. We provide a much more detailed version of this argument
in Chapter 17.

Market-making is thus only profitable if s/2 > R∞, i.e. if the mean profit per
trade is larger than the associated price impact. The larger the value of R∞, the less
profitable market-making becomes. The ideal situation for a market-maker is that
R∞ = 0, which occurs when the sign of each trade is uncorrelated with future price
moves – i.e. when trades have no price impact.

1.3.3 Skewness

Unfortunately for market-makers, the distribution of price changes after a trade is
very broad, with a heavy tail in the direction of the trade. In other words, whereas
most trades contain relatively little information and are therefore innocuous
for market-makers, some rare trades are triggered by highly informed market
participants, such as our insider trader from Section 1.2.1. These traders correctly



1.3 The Risks of Market-Making 17

10−5

10−4

10−3

10−2

10−1

100

−0.6 −0.4 −0.2 0 0.2 0.4

Pr
ob

ab
il

it
y

P&L (%)

PCLN

10−5

10−4

10−3

10−2

10−1

100

−0.6 −0.4 −0.2 0 0.2 0.4

Pr
ob

ab
il

it
y

P&L (%)

INTC

Figure 1.2. Empirical distributions of the P&L of a round-trip trade for (left
panel) PCLN and (right panel) INTC. The negative skewness of the distributions
is a specific feature of the risk borne by market-makers.

anticipate large price jumps before market-makers are able to update their quotes,
and may therefore cause market-makers huge losses (see Figure 1.2).

Let us consider a simple example. Assume that with probability φ, an arriving trade is
informed, and correctly predicts a price jump of size ±J. Otherwise (with probability
1− φ), the arriving trade is uninformed, and does not predict a future price change.
Under the assumption that all trades are independent, it follows that R∞ = φJ. To
break even on average, a market-maker facing this arriving order flow would need to
set s = 2φJ.

The variance σ2
MM of the market-maker’s gain per trade is then given by

σ2
MM = (1−φ)× 0+φ× J2. (1.10)

Similarly, its skewness ςMM (which measures the asymmetry of the distribution of
the gains) is5

ςMM =
(1−φ)× 0−φ× J3

σ3
MM

= −φ− 1
2 . (1.11)

Hence, as the probability φ that an arriving trade is informed decreases to zero, the
relative precision on the average impact decreases as

√
φ, but the skewness diverges

(negatively) as −1/
√
φ.

This simple calculation illustrates that market-making is akin to selling insurance.
Although profitable on average, this strategy may generate enormous losses in the
presence of informed trades.

This very simple argument illustrates why liquidity is fragile and can disappear
quickly during times of market turbulence: the possible down-side risks of large
losses are huge, so liquidity providers are quick to reduce the amount of liquidity
that they offer for purchase or sale if they perceive this risk to be too high.
Therefore, even in the presence of liquidity providers, organising markets to ensure
fair and orderly trading remains a difficult task.

5 The skewness of a random variable with zero mean is usually defined by the ratio of its third moment to
its variance, raised to the power 3/2. Other skewness definitions, less sensitive to outliers, are often used for
financial data.
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1.4 The Liquidity Game

Understanding the delicate dance between buyers and sellers in financial markets
is clearly difficult, but at least one thing is clear: whether informed, uninformed,
or even misinformed, all traders want to get the best possible price for what they
buy or sell.

An important empirical fact that is crucial to understanding how markets operate
is that even “highly liquid” markets are in fact not that liquid after all. Take, for
example, a US large-cap stock, such as PCLN (see the right panel of Figure 1.3).
Trading for this stock is extremely frequent, with each day containing several
thousands of trades that collectively add up to a daily traded volume of roughly
0.5% of the stock’s total market capitalisation. At any given time, however, the
volume of the stock available for purchase or sale at the best quotes is quite small,
and is typically only of the order of about 10−4 of the stock’s market cap. Liquidity
is slightly more plentiful for large-tick stocks, such as CSCO (see the left panel
of Figure 1.3), but it is still small compared to the daily traded volume. This
phenomenon is also apparent in other markets, such as foreign exchange (FX)
and futures, in which trading is even more frantic.

Why is there so little total volume offered for purchase or sale at any point in
time? The reason is precisely what we discussed when summarising the difficulties
of market-making: adverse selection. Liquidity providers bear the risk of being
picked off by an informed trader. To minimise this risk, and perhaps even to bait
informed traders and to out-guess their intentions, liquidity providers only offer
relatively small quantities for trade. This creates a kind of hide-and-seek game in
financial markets: buyers and sellers want to trade, but both avoid showing their
hands and revealing their true intentions. As a result, markets operate in a regime
of small revealed liquidity but large latent liquidity. This observation leads to
many empirical regularities that we will discuss in this book.

The scarcity of available liquidity has an immediate and important consequence:
large trades must be fragmented. More precisely, market participants who wish
to buy or sell large volumes of a given asset must chop up their orders into
smaller pieces, and execute them incrementally over time. For example, it is not
uncommon for an investment fund to want to buy 1% (or more) of a company’s
total market capitalisation. Using the numbers from earlier in this chapter, buying
1% of PCLN would require of the order of 100 or even 1000 individual trades and
would correspond to trading twice the typical volume for a whole day. To avoid
strongly impacting the market and thus paying a higher price, such a transaction
would have to be executed gradually over several days. Therefore, even an inside
trader with clear information about the likely future price of an asset cannot use all
of this information immediately, lest he or she scares the market and gives away
the private information (see Chapter 15). Instead, traders must optimise a trading
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Figure 1.3. Total volume of active orders at the best quotes, normalised by the
daily traded volume (during a full trading day), for (left panel) INTC and CSCO,
two typical large-tick stocks, and (right panel) TSLA and PCLN, two typical
small-tick stocks. The markers show the average over all trading days and the
shaded regions show the corresponding lower and upper quartiles.

schedule that seeks to attain the best possible execution price – a topic that we will
address in Chapter 21.

From a conceptual viewpoint, the most important conclusion from our discus-
sions in this chapter is that prices cannot be in equilibrium, in the traditional sense
that supply and demand are matched at some instant in time. Since transactions
must be fragmented, the instantaneous traded volume is much smaller than the
underlying “true” supply and demand waiting to be matched. Part of the imbalance
is necessarily latent, and can only be slowly digested by markets. At best, the
notion of equilibrium prices can only make sense on longer time scales, but on
such time scales, the information set evolves further. In summary, the equilibrium
price is an elusive concept – and an ever-moving target.

Take-Home Messages

(i) Organising markets to facilitate fair and orderly trade is a very difficult
task.

(ii) Historically, market stability was ensured by designated market-
makers, who quoted bid- and ask-prices and cleared matched orders
(possibly including their own) in one large auction. Market-making
was a risky but potentially lucrative business.

(iii) Most of today’s markets implement a continuous-time double-auction
mechanism, removing the need for a designated market-maker. In
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practice, this mechanism is often implemented using a limit order
book (LOB).

(iv) LOBs allow traders to either provide firm trading opportunities to
the rest of the market (liquidity provision) or to accept such trading
opportunities (liquidity taking).

(v) Today’s liquidity providers play a similar role to the market-makers
of yesterday. In modern markets, however, any market participant can
choose to act as a liquidity provider or a liquidity taker, which makes
these activities highly competitive.

(vi) Liquidity providers run the risk of being “picked-off” by
better-informed traders who correctly anticipate future price moves.
This is known as adverse selection.

(vii) Because of adverse selection, investors typically do not display their
full intentions publicly. The revealed liquidity in an LOB is therefore
only a small fraction of all trading intentions.
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2

The Statistics of Price Changes: An Informal Primer

If you are going to use probability to model a financial market, then you had better
use the right kind of probability. Real markets are wild.

(Benoı̂t B. Mandelbrot)

During the past 40 years, financial engineering has grown tremendously. Today,
both the financial industry and its regulators rely heavily on a wide range of
models to address many different phenomena on many different scales. These
models serve as tools to inform trading decisions and assess risk in a diverse set
of applications, including risk management, risk control, portfolio construction,
derivative pricing, hedging, and even market design.

Among these models, the most widely used are those that seek to describe
changes in an asset’s price. Given their prominence, it is important to consider
the extent to which these models really reflect empirically observed price series,
because models whose assumptions are at odds with real markets are likely to
produce poor output. Also, because so much of the modern financial world relies
on such models so heavily, widespread application of unsuitable models can create
unstable feedback loops and lead to the emergence of system-wide instabilities.
For example, the severe market crash in 1987 is often attributed to the prevalence
of models that assumed independent Gaussian price returns, and thereby severely
underestimated the probability of large price changes. Bizarrely, financial crises
can be induced by the very models designed to prevent them.

Market crashes serve as a wake-up call to reject idealistic simplifications and
to move towards a more realistic framework that encompasses the real statistical
properties of price changes observable in empirical data. Despite considerable
recent effort in this direction, this goal remains elusive, due partly to the fact
that many of the statistical properties of real price series are highly non-trivial
and sometimes counter-intuitive. These statistical properties are called the stylised
facts of financial price series.

22
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The aim of this chapter is to provide an informal introduction to the most
important of these stylised facts. In addition to being interesting in their own
right, these stylised facts constitute a set of quantitative criteria against which to
evaluate models’ outputs. As we discuss throughout the chapter, a model’s inability
to reproduce one or more stylised facts can be used as an indicator for how it needs
to be improved, or even as a reason to rule it out altogether.

Developing a unifying theory that illustrates how these non-trivial statistical
properties emerge from some deeper mechanism of individual actions and
interactions is a core goal that permeates the field of market microstructure. This
general point of view – specifically, a “bottom-up” approach that seeks to explain
the emergence of different phenomena on different scales – is natural among
physicists. It is also consistent with the work of some economists, such as Richard
Lyons, who writes that “microstructure implications may be long-lived” and “are
relevant to macroeconomics”.1 If true, these statements are obviously relevant
for regulators, who might consider altering the microstructural organisation of
financial markets to improve their efficiency and stability (see Chapter 22).

2.1 The Random Walk Model

The first model of price changes dates back to a PhD thesis called Théorie de la
spéculation, written in 1900 by Louis Bachelier. In his thesis, Bachelier proposed
a theory relating Brownian motion to stock markets, five years before Einstein’s
celebrated paper on Brownian motion.

Bachelier’s main arguments were as follows. Since each transaction in a
financial market involves both a buyer and a seller, at each instant in time the
number of people who think that the price is going to rise balances the number
of people who think that the price is going to fall. Therefore, argues Bachelier,
future price changes are de facto unpredictable. In more technical language, prices
are martingales: the best estimate of tomorrow’s price is today’s price. A simple
example, which Bachelier had in mind, is when price changes are independent
identically distributed (IID) random variables with zero mean. Bachelier also noted
that due to the Central Limit Theorem, aggregate price changes over a given time
period (such as a full trading day) should be Gaussian random variables, because
they consist of a very large number of small price changes resulting from individual
transactions.

These observations led Bachelier to consider price series as Gaussian random
walks (i.e. random walks whose increments are IID Gaussian random variables).
Within this framework, Bachelier was able to derive a large number of interesting
results, including statistics describing the first-passage time for a price to reach a

1 Lyons, R. K. (2001). The microstructure approach to exchange rates (Vol. 12). MIT Press.
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certain level, and even the price of options contracts – 70 years before Black and
Scholes!2

2.1.1 Bachelier’s First Law

The simplest of Bachelier’s results states that typical price variations pt+τ− pt grow
like the square root of the lag τ. More formally, under the assumption that price
changes have zero mean (which is a good approximation on short time scales),
then the price variogram

V(τ) := E[(pt+τ − pt)
2] (2.1)

grows linearly with time lag τ, such thatV(τ) = Dτ.
Subsequent to Bachelier’s thesis, many empirical studies noted that the typical

size of a given stock’s price change tends to be proportional to the stock’s price
itself. This suggests that price changes should be regarded as multiplicative rather
than additive, which in turn suggests the use of geometric Brownian motion for
price-series modelling. Indeed, geometric Brownian motion has been the standard
model in the field of mathematical finance since the 1960s.

Over short time horizons, however, there is empirical evidence that price
changes are closer to being additive than multiplicative. One important reason for
this is that most markets enforce resolution parameters (such as the tick size – see
Section 3.1.5) that dictate the minimum allowable price change. Therefore, at the
short time scales that we will focus on in this book, it is usually more appropriate
to consider additive models for price changes.

Still, given the prevalence of multiplicative models for price changes on longer
time scales, it has become customary to define the volatility σr in relative terms
(even for short time scales), according to the equation

D := σ2
r p̄2, (2.2)

where p̄ is either the current price or some medium-term average.

2.1.2 Correlated Returns

How can we extend Bachelier’s first law to the case where price changes are not
independent? Assume that a price series is described by

pt = p0 + p̄
t−1∑
t′=0

rt′ , (2.3)

2 Technically, Bachelier missed the hedging strategy and its associated P&L. However, when the drift can be
neglected, as assumed by Bachelier, his fair-pricing argument is indeed correct. See, e.g., Bouchaud, J. P., &
Potters, M. (2003). Theory of financial risk and derivative pricing: From statistical physics to risk management.
Cambridge University Press.
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where the return series rt is time-stationary with mean

E[rt] = 0 (2.4)

and variance

E[r2
t ]−E[rt]

2 = σ2
r . (2.5)

One way to quantify the dependence between two entries rt′ and rt′′ in the return
series is via their covariance

Cov(rt′ ,rt′′) := E[rt′rt′′]−E[rt′]E[rt′′] = E[rt′rt′′].

Given that the return series is time-stationary, this covariance depends only on
the time lag |t′ − t′′| between the two observations. Therefore, a common way to
consider the dependence between rt′ and rt′′ is via the autocorrelation function
(ACF)

Cr(τ) :=
Cov(rt,rt+τ)

σ2
r

. (2.6)

The case of a random walk with uncorrelated price returns corresponds to
Cr(τ) = δτ,0, where δτ,0 is the Kronecker delta function

δi, j =

{
1, if i = j,
0, otherwise.

(2.7)

For τ > 0, a trending random walk has Cr(τ) > 0 and a mean-reverting random
walk has Cr(τ) < 0. How does this affect Bachelier’s first law?

One important consideration is that the volatility observed by sampling the price
series on a given time scale is itself dependent on that time scale. More precisely,
if we sample the pt series once every τ seconds, then the volatility of our sampled
series is given by

σ2(τ) :=
V(τ)
τp̄2

, (2.8)

where V(τ) is the variogram given by Equation (2.1), and by definition σ2(1) :=
σ2

r .

By plugging Equation (2.3) into the definition ofV(τ) and expanding the square,
we can derive a general formula for σ2(τ) in terms of Cr(·):

σ2(τ) = σ2
r

⎡⎢⎢⎢⎢⎢⎣1+ 2
τ∑

u=1

(
1− u

τ

)
Cr(u)

⎤⎥⎥⎥⎥⎥⎦ . (2.9)

A plot of σ(τ) versus τ is called a volatility signature plot. Figure 2.1 shows
an example volatility signature plot for the simple case of a return series with
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Figure 2.1. Example volatility signature plot for the simple case of a return
series with an exponentially decaying ACF Cr(u) = ρu. An uncorrelated random
walk (i.e. with ρ = 0) leads to a constant volatility. Positive correlations lead
to an increasing σ(τ) whereas negative correlations lead to a decreasing σ(τ).
The signature plot is flat only for time series that are neither trending nor
mean-reverting on all scales.

an exponentially decaying ACF Cr(u) = ρu. As the plot illustrates, the case of
an uncorrelated random walk (i.e. with ρ = 0) leads to a constant volatility.
Positive correlations (which correspond to trends) lead to an increase in σ(τ) with
increasing τ. Negative correlations (which correspond to mean reversion) lead to
a decrease in σ(τ) with increasing τ. In fact, from Equation (2.9), one finds that in
the case of an exponentially decaying ACF,

lim
τ→∞

σ2(τ)
σ2(1)

=
1+ ρ
1− ρ. (2.10)

2.1.3 High-Frequency Noise

Another interesting case occurs when the price pt is soiled by some high-frequency
noise, such as that coming from price discretisation effects, from pricing errors or
data problems. In this section, we consider the case where rather than being given
by Equation (2.3), pt is instead assumed to be given by

pt = p0 + p̄
t−1∑
t′=0

rt′ + ηt (2.11)
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where the noise ηt has mean zero, variance σ2
η and is uncorrelated with rt, but is

autocorrelated with an exponential ACF

Cη(τ) :=
Cov(ηt,ηt+τ)

σ2
η

= e−τ/τη , (2.12)

where τη denotes the correlation time of the noise.3

One possible interpretation of this model is that the market price can temporarily
deviate from the true price (corresponding to ηt = 0). The mispricing is a random
error term that mean-reverts over time scale τη (see Section 20.3 for a more
detailed discussion). Another common interpretation is that of microstructure
noise, coming from the fact that there is no unique price pt but at best two prices,
the bid bt and the ask at, from which one has to come up with a proxy of the true
price pt. This necessarily generates some error term, which one can assume to be
mean-reverting, leading to what is commonly known as a bid–ask bounce effect.

How does this noise on pt affect the observed volatility? By replacing Cr(τ) in
Equation (2.9) with the ACF Cη(τ), we see that compared to the volatility observed
in a price series without noise, the addition of the ηt term in Equation (2.11) serves
to increase the lag-τ square volatility as

σ2(τ) −→ σ2(τ)+
2σ2

η

τ

(
1− e−τ/τη

)
. (2.13)

This additional term decays from 2σ2
η/τη for τ = 0, to 0 for τ→ ∞. The effect

of this correlated high-frequency noise on a volatility signature plot is thus akin
to mean-reversion, in the sense that it creates a higher short-term volatility than
long-term volatility.

2.1.4 Volatility Signature Plots for Real Price Series

How well does Bachelier’s first law hold for real price series? Quite remarkably,
the volatility signature plots of most liquid assets are indeed almost flat for values
of τ ranging from a few seconds to a few months (beyond which it becomes
dubious whether the statistical assumption of stationarity still holds). To illustrate
this point, Figure 2.2 shows the empirical mid-price signature plot from τ = 1
second to τ = 106 seconds (which corresponds to about 20 trading days) for the
S&P500 E-mini futures contract, which is one of the most liquid contracts in the
world. As Figure 2.2 shows, σ(τ) is almost flat over this entire range, and only
decreases by about 20%, which indicates a weakly mean-reverting price. The exact
form of a volatility signature plot depends on the microstructural details of the

3 The noise η is often called an Ornstein–Uhlenbeck process, see, e.g., Gardiner, C. W. (1985). Stochastic
methods. Springer, Berlin-Heidelberg.
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Figure 2.2. Mid-price signature plot for the S&P500 E-mini futures contract,
for time lags up to approximately 280 hours (which corresponds to 20
days of trading). The signature plot is almost flat, which implies only weak
mean-reversion.

underlying asset, but most liquid contracts have a similar volatility signature plot
to that shown in Figure 2.2.

The important conclusion from this empirical result is that long-term volatility is
almost identical to the volatility at the shortest time scales, where price formation
takes place. Depending on how we view this result, it is either trivial (a simple
random walk has this property) or extremely non-intuitive. In fact, as we discuss
below, one should expect a rather large fundamental uncertainty about the price of
an asset, which would translate into substantially larger high-frequency volatility,
as with the η noise described in Section 2.1.3. Although Figure 2.2 shows that
high-frequency volatility is slightly larger than low-frequency volatility, the size
of this effect is small. This indicates that empirical price series exhibit only weak
violations of Bachelier’s first law (see Section 2.3.2), and suggests that phenomena
happening on short time scales may be relevant for the long-term dynamics of
prices.

2.2 Jumps and Intermittency in Financial Markets

2.2.1 Heavy Tails

Many financial models assume that returns follow a Gaussian distribution.
However, an overwhelming body of empirical evidence from a vast array of
financial instruments (including stocks, currencies, interest rates, commodities,
and even implied volatility) shows this not to be the case. Instead, the unconditional



2.2 Jumps and Intermittency in Financial Markets 29

10−6

10−5

10−4

10−3

10−2

10−1

100

100 101 102

Pr
ob

ab
ili

ty
 d

en
si

ty

Return (%)

CDS
iVol
Equ

y x−3.5

Figure 2.3. Empirical distribution of normalised daily returns of (squares) a
family of US stocks, (circles) the spread of the credit default swaps (CDS)
on the same stocks, and (diamonds) the average implied volatility of vanilla
options again on the same stocks, all during the period 2011–2013. Returns have
been normalised by their own volatility before aggregation. The tails of these
distributions follow a power-law, with an exponent approximately equal to 3.5.

distribution of returns has fat tails, which decay as a power law for large arguments
and are much heavier than the corresponding tails of the Gaussian distribution.

On short time scales (between about a minute and a few hours), the empirical
density function of returns can be fit reasonably well by a Student’s t distribution,
whose probability density function is given by:4

fr(r) =
1√
π

Γ[ 1+μ
2 ]

Γ[μ2 ]

aμ

(r2 + a2)
1+μ

2

−→
|r|	a

aμ

|r|1+μ , (2.14)

where μ is the tail parameter and a is related to the variance of the distribution
through σ2 = a2/(μ− 2). Empirically, the tail parameter μ is consistently found to
be about 3 for a wide variety of different markets, which suggests some kind of
universality in the mechanism leading to extreme returns (see Figure 2.3).5 As
we discuss below, this universality hints at the fact that fundamental factors are
probably unimportant in determining the amplitude of most price jumps.

If σ2 is fixed, then the Gaussian distribution is recovered in the limit μ→∞.
However, the difference between μ = 3 and μ→∞ is spectacular for tail events. In
a Gaussian world, jumps of size larger than 10σ would only occur with negligible

4 We assume here and in the following that returns have zero mean, which is appropriate for sufficiently short
time scales (see discussion above).

5 In fact, one can test the hypothesis that the different stocks share the same return distribution. This hypothesis
cannot be rejected once volatility clustering effects are taken into account; on this point see: Chicheportiche, R.,
& Bouchaud, J.-P. (2011). Goodness-of-fit tests with dependent observations. Journal of Statistical Mechanics:
Theory and Experiment. (09), PO9003.
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probability (∼ 10−23). For a Student’s t distribution with μ = 3, by contrast, this
probability is ∼ 4× 10−4, which is several orders of magnitude larger.6

2.2.2 Volatility Clustering

Although considering the unconditional distribution of returns is informative, it is
also somewhat misleading. Returns are in fact very far from being non-Gaussian
IID random variables – although they are indeed nearly uncorrelated, as their flat
signature plots demonstrate (see Figure 2.2). Such an IID model would predict
that upon time aggregation, the distribution of returns would quickly converge
to a Gaussian distribution on longer time scales (provided the second moment is
finite, i.e. μ > 2). Empirical data, on the other hand, indicates that returns remain
substantially non-Gaussian on time scales up to weeks or even months.

The dynamics of financial markets is highly intermittent, with periods of intense
activity intertwined with periods of relative calm. In intuitive terms, the volatility
of financial returns is itself a dynamic variable characterised by a very broad
distribution of relaxation times. In more formal terms, returns can be decomposed
as the product of a time-dependent volatility component σt and a directional
component ξt,

rt := σtξt. (2.15)

In this representation, ξt are IID (but not necessarily Gaussian) random variables
of unit variance and σt are positive random variables that are empirically found to
exhibit an interesting statistical property called long memory, which we explore
in detail in Section 10.1. More precisely, writing σt =σ0eωt , where σ0 is a constant
that sets the volatility scale, one finds that ωt is an approximately Gaussian random
variable with a variogram (see Section 2.1.1) given by

Vω(τ) = 〈(ωt −ωt+τ)
2〉 � χ2

0 ln[1+min(τ,T )], (2.16)

where T is a long cut-off time, estimated to be on the scale of years.7 The parameter
χ0 sets the scale of the log-volatility fluctuations and is often called the volatility
of the volatility (or “vol of vol”). For most assets, its value is found to be χ2

0 � 0.05.

6 We have used here that for μ = 3, the cumulative distribution of the Student’s t distribution is:

1−Fr(r) =
1
2
− 1
π

[
arctanr+

r

1+ r2

]
(μ = 3, a = 1, σ2 = 1).

Another useful formula gives the partial contribution to volatility:∫ r

0
dx x2 fr(x) =

1
π

(
arctanr− r

1+ r2

)
(μ = 3, a = 1, σ2 = 1).

7 A recent study suggests rather that “volatility is rough” in the sense that Vω(τ) ∝ τ2H with H � 0.1, but note
that the two functional forms become identical in the limit H→ 0. Gatheral, J., Jaisson, T., & Rosenbaum, M.
(2014). Volatility is rough. arXiv:1410.3394.
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The variogram in Equation (2.16) is markedly different from the one corre-
sponding to an Ornstein–Uhlenbeck log–volatility process, characterised by a
single relaxation time τω, which would read

Vω(τ) = χ2
0

(
1− e−τ/τω

)
. (2.17)

In other words, volatility fluctuations in financial markets are multi-time scale:
there are volatility bursts of all sizes, from seconds to years. This remarkable
feature of financial time series can also be observed in several other complex
physical systems, such as turbulent flows.

It is worth pointing out that volatilities σ and scaled returns ξ are not
independent random variables. It is well documented that positive past returns
tend to decrease future volatilities and that negative past returns tend to increase
future volatilities (i.e. 〈ξtσt+τ〉 < 0 for τ > 0). This is called the leverage effect.
Importantly, however, past volatilities do not give much information on the sign of
future returns (i.e. 〈ξtσt+τ〉 � 0 for τ < 0).

2.2.3 Delayed Convergence Towards the Gaussian
Why do returns remain substantially non-Gaussian on time scales up to weeks
or even months? Let us consider what happens when, as in Equation (2.3), we
sum uncorrelated but dependent random variables such as those described by
Equation (2.15). When the number of terms t is large, the Central Limit Theorem
(CLT) holds, so the sum converges to a Gaussian random variable. The speed
of convergence is a subtle issue, but the simplified picture is that in the case of
symmetric IID random variables, the leading correction term (when compared to
the Gaussian) scales at large t as t−1.

However, the dependence between the random variables causes the convergence
to occur much more slowly than for the IID case. In the presence of long-ranged
volatility correlations, such as given by Equation (2.16), one can show that the
leading correction to Gaussian behaviour instead decays as t−ζ with ζ = min(1,4χ2

0)
(i.e. as ∼ t−0.2 for the value of χ2

0 quoted above). Hence, the corrections to the
asymptotic Gaussian behaviour are very slow to disappear, and it may take months
or even years before the CLT applies.8

2.2.4 Activity Clustering

In view of these long-range correlations of the volatility, it is interesting to
study the temporal fluctuations of market activity itself, defined for example
as the frequency of mid-price changes, or as the frequency of market order
submission. Even a cursory look at the time series of mid-price changes (see
Figure 2.4) suggests a strong degree of clustering in the activity as well. What
is the relationship between the clustering of market activity and the clustering of
volatility?

8 On this specific point, see the detailed discussion in Bouchaud, J. P., & Potters, M. (2003). Theory of financial
risk and derivative pricing: From statistical physics to risk management. Cambridge University Press.
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Figure 2.4. Time series of absolute changes in mid-price for TSLA, measured
during a typical five-minute time interval. There are several periods with a high
concentration of mid-price changes, and several other periods of relative calm.

Consider the following simple model. Assume that the price can only change by
one tick ϑ at a time, either up or down, with rate ϕ per unit time, which quantifies
the activity of the market. Assume also that when a price change occurs, up (+ϑ)
and down (−ϑ) moves occur with equal probability. The price volatility in this
model is then simply

σ2 = ϕ ϑ2. (2.18)

A more precise way to characterise this clustering property is to choose a time
t and a small dt, and count the number dNt of price changes that occur during the
time interval [t, t+ dt] (i.e. count dNt = 1 if the mid-price changed or dNt = 0 if it
did not). The empirical average of dNt provides a way to define the average market
activity ϕ̄ as

〈dNt〉 := ϕ̄dt. (2.19)

The covariance Cov[ dNt

dt ,
dNt+τ

dt ] describes the temporal structure of the fluctua-
tions in market activity. Figure (2.5) shows that the activity in financial markets is
characterised both by long memory (the activity is autocorrelated over very long
periods, of 100 days or more) and by an intricate pattern of daily and weekly
periodicities.

The relationship between volatility and market activity given in Equation (2.18)
however fails to address many other possible ways that prices can change. For
example, it does not address the scenario where the price is mostly stable but
occasionally makes very large jumps. Prices in financial markets tend to exhibit
both types of volatilities: small frequent moves and rare extreme moves.

The broad distribution of price changes discussed in Section 2.2.1 describes
exactly this duality between activity and jumps. The relative contribution of jumps
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Figure 2.5. Autocorrelation of the trading activity of the S&P500 E-mini futures
contract measured as the number of mid-price changes (left panel) per 30-minute
interval and (right panel) per day. At the intra-day level, there are clear peaks with
daily periodicity associated with the intra-day pattern. At the daily level, there is
a clear weekly periodicity and still substantial correlation after 100 days.

to the total volatility depends on the precise definition of a jump, but assuming
that returns follow a Student’s t distribution, one finds (using the second formula
of footnote 6 above) that jumps defined as events of magnitude greater than 4σ
contribute about 30% of the total variance. This is quite substantial, especially
given that a large fraction of these jumps appear to be unrelated to any clearly
identifiable news.

Furthermore, the two types of events are intertwined in a subtle manner: an
increased volatility at time t appears to trigger more activity at time t + τ, much
like earthquakes are followed by aftershocks. For example, a large jump is usually
followed by an increased frequency of smaller price moves. More generally, some
kind of self-excitation seems to be present in financial markets. This takes place
either temporally (some events trigger more events in the future) or across different
assets (the activity of one stock spills over to other correlated stocks, or even
from one market to another). We present mathematical models to describe these
contagion effects in Chapter 9.

2.3 Why Do Prices Move?

2.3.1 The Excess Volatility Puzzle

Why do prices behave like random walks? Often, this question is addressed via
the argument that assets have a fundamental value that is known (or computed)
by informed traders, who buy or sell the asset according to whether it is under- or
over-priced. By the impact of making these profitable trades, the informed traders
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drive the price back towards its fundamental value. We develop a formal notion of
price impact throughout the book, and discuss this topic in detail in Chapter 11.

In this framework, the market price of an asset can only change due to the arrival
of unanticipated news (up to short-lived mispricings). The standard picture is as
follows: as such news becomes available, fast market participants calculate how it
affects the fundamental price, then trade accordingly. After a phase of tâtonnement,
the price should converge to its new fundamental value, around which it makes
random, high-frequency oscillations due to the trades of uninformed market
participants, until the next piece of unanticipated news arrives and the whole
process repeats.

This idea resides at the very heart of efficient-market theory, but is this picture
correct? Can it account for the volatility observed in real markets?

Consider again the case of a typical US large-cap stock, say Apple, which has
a daily turnover of around $4–5 billion. Each second, one observes on average six
transactions and of the order of 100 events for this stock alone. Compared to the
typical time between news arrivals that could potentially affect the price of the
company (which are on the scale of one every few days, or perhaps hours), these
frequencies are extremely high, suggesting that market activity is not only driven
by news.

Perhaps surprisingly, the number of large price jumps is in fact also much higher
than the number of relevant news arrivals. In other words, most large price moves
seem to be unrelated to news, but rather to arise endogenously from trading activity
itself. As emphasised by Cutler, Poterba and Summers, “The evidence that large
market moves occur on days without identifiable major news casts doubts on the
view that price movements are fully explicable by news.”9

This is a manifestation of Shiller’s excess-volatility puzzle: the actual volatility
of prices appears to be much higher than the one warranted by fluctuations of the
underlying fundamental value.

2.3.2 The Flat Volatility Puzzle

Perhaps even more puzzling is the following: despite the fact that it should
take some time for the market to interpret a piece of news and agree on a
new price, and despite the fact that liquidity is too thin for supply and demand
to be fully and instantaneously revealed, financial time series show very little
under-reaction (which would create trend) or over-reaction (which would lead
to mean-reversion), leading to almost flat empirical signature plots. How can
this be?

9 Cutler, D. M., Poterba, J. M., & Summers, L. H. (1989). What moves stock prices? The Journal of Portfolio
Management, 15(3), 4–12.
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If price trajectories consisted of a sequence of equilibrium values (around which
prices randomly fluctuate) that are interrupted by jumps to another equilibrium
price when some unanticipated news becomes available, then signature plots
should show a significant decay, as in Figure 2.1. Note that relatively small
fluctuations of about 0.1% around the equilibrium value, with a correlation time of
10 minutes, would lead to a high-frequency volatility contribution twice as large as
the long-term volatility for the S&P500 future contract. This is clearly not observed
empirically.

An alternative picture, motivated by a microstructural viewpoint, is that highly
optimised execution algorithms and market-making strategies actively search for
any detectable correlations or trends in return series, and implement trading
strategies designed to exploit any consequent predictability in asset prices.
By doing so, these algorithms and strategies iron out all irregularities in the
signature plots. Expressed in terms of the ecology of financial markets (see
Chapter 1), higher-frequency strategies feed on the inefficiencies generated by
slower strategies, finally resulting in white-noise returns on all time scales. We
will return to this important discussion in Chapter 20.

2.3.3 How Relevant is Fundamental Value?

A crucial discussion in financial economics concerns the notion of “efficiency”.
Are prices fundamentally efficient (in the sense that they are always close
to some fundamental value) or merely statistically efficient (in the sense that
all predictable patterns are exploited and removed by technical trading)? After
all, purely random trades – think of a market driven by proverbial monkeys
(after failing to transcribe the complete works of Shakespeare) – would generate
random price changes and a flat signature plot, without reflecting any fundamental
information at all. In fact, Black famously argued that prices are correct to within
a factor of 2. If this is the case, the anchor to fundamental values can only be felt
on a time scale T such that purely random fluctuations σ

√
T become of the order

of say 50% of the fundamental price, leading to T = 6 years for the stock market
with a typical annual volatility of σ = 20%.10

Such long time scales suggest that the notion of a fundamental price is secondary
to understanding the dynamics of prices at the scale of a few seconds to a few days.
These are the time scales relevant for the microstructural effects that we study in
this book. Such a decoupling allows us to mostly disregard the role of fundamental

10 This long time scale makes it very difficult to establish statistically whether mean-reversion occurs at all,
although several studies have suggested that this is indeed the case, see, e.g., Bondt, W. F., & Thaler, R.
(1985). Does the stock market overreact? The Journal of Finance, 40(3), 793–805. See also Summers, L. H.
(1986). Does the stock market rationally reflect fundamental values? The Journal of Finance, 41(3), 591–601.
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value in the following discussions, and instead focus on the notion of statistical
efficiency (see, however, Chapter 20).

2.4 Summary and Outlook

The main message of this chapter is that price changes are remarkably uncorrelated
over a large range of frequencies, with few signs of price adjustments or
tâtonnement at high frequencies. The long-term volatility is already determined at
the high-frequency end of the spectrum. In fact, the frequency of news that would
affect the fundamental value of financial assets is much lower than the frequency
of price changes. It is as if price changes themselves are the main source of news,
and induce feedback that creates excess volatility and, most probably, price jumps
that occur without any news at all. Interestingly, all quantitative volatility/activity
feedback models (such as ARCH-type models,11 or Hawkes processes, which we
discuss in Chapter 9) suggest that at least 80% of the price variance is induced by
self-referential effects. This adds credence to the idea that the lion’s share of the
short- to medium-term activity of financial markets is unrelated to any fundamental
information or economic effects.

The decoupling between price and fundamental value opens the exciting
prospect of building a theory of price moves that is mostly based on the
endogenous, self-exciting dynamics of markets, and not on long-term fundamental
effects, which are notoriously hard to model. One particularly important question
is to understand the origin and mechanisms leading to price jumps, which seem
to have a similar structure on all liquid markets (again indicating that fundamental
factors are probably unimportant at short time scales). This is precisely the aim
of a microstructural approach to financial markets: reconstructing the dynamics
of prices from the bottom up and illustrating how microstructure can indeed be
relevant to lower-frequency price dynamics.

Take-Home Messages

(i) Standard Gaussian random-walk models grossly underestimate
extreme fluctuations in price returns. In reality, price changes follow
fat-tailed, power-law distributions. Extreme events are not as rare as
Gaussian models would predict.

(ii) Market activity and volatility are highly intermittent in time, with
periods of intense activity intertwined with periods of relative calm.

11 See, e.g., Bollerslev, T., Engle, R. F., & Nelson, D. B. (1994). ARCH models. In Engle, R. & McFadden, D.
(Eds.), Handbook of econometrics (Vol. 4, pp. 2959–3028). North-Holland.
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(iii) Periods of intense activity/volatility only partially overlap with the
arrival of news. In fact, most activity is endogenous, and is triggered
by past activity itself.

(iv) A volatility signature plot describes how the volatility of a price series
varies with the lag on which it is computed. A decreasing signature
plot indicates mean-reversion; an increasing signature plot indicates
trending.

(v) Empirical signature plots are remarkably flat over a wide range of
time scales, from seconds to months. This is a sign that markets
are statistically efficient, in the sense that prices are (linearly)
unpredictable.

(vi) Markets exhibit substantial excess volatility: statistical efficiency does
not imply fundamental efficiency.
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Introduction

Now that the big picture is set, it is time to dive more deeply into the detailed
mechanics of trading in modern financial markets. As we will see, practical
aspects of market design can substantially affect the microscopic-scale behaviour
of individual agents. These actions can then proliferate and cascade to the
macroscopic scale.

In this part, we will embark on a detailed discussion of limit order books
(LOBs), which are nowadays omnipresent in the organisation of lit markets (i.e.
open markets where supply and demand are displayed publicly). We will start by
describing the founding principle of LOBs, namely the interaction between limit
orders, which offer trading opportunities to the rest of the world, and market orders,
which take these opportunities and result in immediate transactions. LOBs are not
only a place where buyers meet sellers, but also a place where patient traders (or
“liquidity providers”) meet impatient traders (or “liquidity takers”). For practical
reasons, LOB activity is constrained to a predefined price and volume grid, whose
resolution parameters are defined by the tick size and the lot size, respectively. At
any point in time, the state of an LOB is defined by the outstanding limit orders on
this grid.

LOBs are an elegant and simple way to channel the trading intentions of market
participants into a market price. In an LOB, any buy and sell orders whose prices
cross are matched and immediately removed from the LOB. Therefore, an LOB is
a collection of lower-priced buy orders and higher-priced sell orders, separated by
a bid–ask spread. The persistent aspect of limit orders is key for the stability of the
LOB state and the market price.

In the coming chapters, we will discuss several interesting empirical properties
that emerge from the interactions of traders in an LOB. We will see that both the
distribution of arriving order volumes and the distribution of outstanding volume
in an LOB are fat tailed, and we will discuss the consequences of these properties
in the context of market stability. We will also discuss the important role of
intra-day seasonalities in understanding market dynamics. Last but not least, we
will highlight how order flow presents complex conditioning that strongly affects
the price-formation process. The understanding of this subtle dance, which is
crucial for the modelling of price changes, will be the topic of the next part.
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Limit Order Books

Though this be madness, yet there is method in’t.
(Shakespeare, Hamlet)

Today, most of the world’s financial markets use an electronic trading mechanism
called a limit order book (LOB) to facilitate trade. The Helsinki, Hong Kong,
London, New York, Shenzhen, Swiss, Tokyo, Toronto and Vancouver Stock
Exchanges, together with Euronext, the Australian Securities Exchange and
NASDAQ, all use LOBs, as do many smaller markets. In this chapter, we provide a
detailed introduction to trading via LOBs, and we discuss how price changes in an
LOB emerge from the dynamic interplay between liquidity providers and liquidity
takers.

3.1 The Mechanics of LOB Trading

In contrast to quote-driven systems (see Chapter 1), in which prices are set by
designated market-makers, price formation in an LOB is a self-organised process
that is driven by the submissions and cancellations of orders. Each order is a visible
declaration of a market participant’s desire to buy or sell a specified quantity of an
asset at a specified price. Active orders reside in a queue until they are either
cancelled by their owner or executed against an order of opposite direction. Upon
execution, the owners of the relevant orders trade the agreed quantity of the asset
at the agreed price.

Whereas in the old days the list of buy and sell orders was only known to the
specialist, the queues of outstanding orders in LOBs are now observable in real
time by traders from around the world. Because each order within these queues
constitutes a firm commitment to trade, analysing the state of the LOB provides a
concrete way to quantify the visible liquidity for a given asset.

44
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3.1.1 Orders

An order is a commitment, declared at a given submission time, to buy or sell
a given volume of an asset at no worse than a given price. An order x is thus
described by four attributes:

• its sign (or direction) εx = ±1, (εx = +1 for buy orders; εx = −1 for sell orders),
• its price px,
• its volume υx > 0, and
• its submission time tx.

We introduce the succinct notation

x := (εx, px,υx, tx). (3.1)

3.1.2 The Trade-Matching Algorithm

Whenever a trader submits a buy (respectively, sell) order x, an LOB’s trade-
matching algorithm checks whether it is possible for x to match to existing sell
(respectively,buy)ordersysuchthat py ≤ px (respectively, py ≥ px).Ifso,thematching
occurs immediately and the relevant traders perform a trade for the agreed amount at
the agreed price. Any portion of x that does not match instead becomes active at the
price px, and it remains active until either it matches to an incoming sell (respectively,
buy) order or it is cancelled. Cancellation usually occurs when the owner of an order
no longer wishes to offer a trade at the stated price.

3.1.3 Market Orders, Limit Orders and the LOB

Orders that match upon arrival are called market orders. Orders that do not
match upon arrival are called limit orders. A limit order book (LOB) is simply a
collection of revealed, unsatisfied intentions to buy or sell an asset at a given time.
More precisely, an LOB L (t) is the set of all limit orders for a given asset on a
given platform1 at time t.

The limit orders in L (t) can be partitioned into the set of buy limit orders B(t)
(for which εx = +1) and the set of sell limit ordersA(t) (for which εx = −1).

Throughout the book, we will consider the evolution of an LOB L (t) as a
so-called càglàd process (continu à gauche, limite à droite). Informally, this means
that when a new order x is submitted at time tx, we regard it to be present in
the LOB immediately after its arrival, but not immediately upon its arrival. More
formally, we introduce the notation

L (t) = lim
t′↓t

L (t′) (3.2)

1 In modern financial markets, many assets are traded on several different platforms simultaneously. The
consolidated LOB is the union of all LOBs for the asset, across all platforms where it is traded.
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to denote the state of L (t) immediately after time t.2 Therefore, for a limit order
x submitted at time tx, it holds that

x �L (tx),

x ∈L (tx).

Traders in an LOB are able to choose the submission price px, which will classify
the order as a limit order (when it does not lead to an immediate transaction) or as
a market order (when it is immediately matched to a limit order of opposite sign).
Limit orders stand a chance of matching at better prices than do market orders, but
they also run the risk of never being matched. Conversely, market orders match at
worse prices, but they do not face the inherent uncertainty associated with limit
orders. Some trading platforms allow traders to specify that they wish to submit a
market order without explicitly specifying a price. Instead, such a trader specifies
only a size, and the LOB’s trade-matching algorithm sets the price of the order
appropriately to initiate the required matching.

The popularity of LOBs is partly due to their ability to allow some traders to
demand immediacy (by submitting market orders), while simultaneously allowing
others to supply it (by submitting limit orders) and hence to at least partially play
the traditional role of market-makers. Importantly, liquidity provision in an LOB is
a decentralised and self-organised process, driven by the submission of limit orders
from all market participants. In reality, many traders or execution algorithms use
a combination of both limit orders and market orders by selecting their actions for
each situation based on their individual needs at that time.

The following remark can be helpful in thinking about the relative merits of
limit orders and market orders. In an LOB, each limit order can be construed as
an option contract written to the whole market, via which the order’s owner offers
to buy or sell the specified quantity υx of the asset at the specified price px to
any trader wishing to accept. For example, a trader who submits a sell limit order
x = (−1, px,υx, tx) is offering the entire market a free option to buy υx units of
the asset at price px for as long as the order remains active. Traders offer such
options – i.e. submit limit orders – in the hope that they will be able to trade at
better prices than if they simply submitted market orders. However, whether or not
a limit order will eventually become matched is uncertain, and if it is matched,
there is a good chance that the price will continue drifting beyond the limit price,
leading to a loss for the issuer of the option. This is an example of adverse selection
and its associated skewness, which we already discussed in Section 1.3.2. In a
nutshell, as we will show later in the book (see Section 21.3), limit orders typically
earn profits when prices mean-revert but suffer losses when prices trend.

2 The notation t′ ↓ t (t′ ↑ t) means that t′ approaches t from above (below).
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3.1.4 The Bid-, Ask- and Mid-Price

The terms bid-price, ask-price, mid-price and spread (all of which we have already
encountered in Chapter 1) are common to much of the finance literature. Their
definitions can be made specific in the context of an LOB (see Figure 3.1):

• The bid-price at time t is the highest stated price among buy limit orders at
time t,

b(t) := max
x∈B(t)

px. (3.3)

• The ask-price at time t is the lowest stated price among sell limit orders at time t,

a(t) := min
x∈A(t)

px. (3.4)

At any given time, b(t) is therefore the highest price at which it is immediately
possible to sell and a(t) is the lowest price at which it is immediately possible to
buy. By definition, a(t) > b(t), otherwise some buy and sell limit orders can be
immediately matched and removed from the LOB.

• The mid-price at time t is

m(t) :=
1
2

[a(t)+ b(t)] .

• The bid–ask spread (or simply “spread”) at time t is

s(t) := a(t)− b(t) > 0.

Each of b(t), a(t), m(t) and s(t) are also càglàd processes. We use the same
overline notation as in Equation (3.2) to denote the values of these processes
immediately after time t. For example,

m(t) = lim
t′↓t

m(t′)

denotes the mid-price immediately after t.
Figure 3.1 shows a schematic of an LOB at some instant in time, illustrating the

above definitions. The horizontal lines within the blocks at each price level denote
how the total volume available at that price is composed of different limit orders.
As the figure illustrates, an LOB can be regarded as a set of queues, each of which
consists of a set of buy or sell limit orders at a specified price. As we will discuss
at many points throughout the book, this interpretation of an LOB as a system of
queues often provides a useful starting point for building LOB models.

3.1.5 The Lot Size and Tick Size

When submitting an order x, a trader must choose the size υx and price px

according to the relevant lot size and tick size of the given LOB.
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Figure 3.1. A schematic of an LOB, to illustrate the bid-price, the ask-price, the
available volumes, the mid-price, and the bid–ask spread.

• The lot size υ0 is the smallest amount of the asset that can be traded within the
given LOB. All orders must arrive with a size

υx ∈ {kυ0 |k = 1,2, . . .} .
• The tick size ϑ is the smallest permissible price interval between different orders

within a given LOB. All orders must arrive with a price that is a multiple of ϑ.

The lot size and tick size fix the units of order size and order price in a given
LOB. For example, if ϑ = $0.001, then the largest permissible order price that
is strictly less than $1.00 is $0.999, and all orders must be submitted at a price
with exactly three decimal places. The lot size υ0 and tick size ϑ of an LOB are
collectively called its resolution parameters.

Values of υ0 and ϑ vary greatly from between different trading platforms.
Expensive stocks are often traded with υ0 = 1 share; cheaper stocks are often traded
with υ0	 1 share. In foreign exchange (FX) markets, some trading platforms use
values as large as υ0 = 1 million units of the base currency, whereas others use
values as small as υ0 = 0.01 units of the base currency.3 In equity markets, ϑ is
often 0.01% of the stock’s mid-price m(t), rounded to the nearest power of 10. In
US equity markets, the tick size is always ϑ = $0.01, independently of the stock
price. A given asset is sometimes traded with different values of ϑ on different

3 In FX markets, an XXX/YYY LOB matches exchanges of the base currency XXX to the counter currency
YYY. A price in an XXX/YYY LOB denotes how many units of currency YYY are exchanged for a single unit
of currency XXX. For example, a trade at the price $1.28124 in a GBP/USD market corresponds to 1 pound
sterling being exchanged for 1.28124 US dollars.
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trading platforms. For example, on the electronic trading platform Hotspot FX,
ϑ = $0.00001 for the GBP/USD LOB and ϑ = 0.001 for the USD/JPY LOB,
whereas on the electronic trading platform EBS, ϑ = $0.00005 for the GBP/USD
LOB and ϑ = 0.005 for the USD/JPY LOB.

An LOB’s resolution parameters greatly affect trading. The lot size υ0 dictates
the smallest permissible order size, so any trader who wishes to trade in quantities
smaller than υ0 is unable to do so. Furthermore, as we will discuss in Chapter 10,
traders who wish to submit large market orders often break them into smaller
chunks to minimise their price impact. The size of υ0 controls the smallest
permissible size of these chunks and therefore directly affects traders who
implement such a strategy.

The tick size ϑ dictates how much more expensive it is for a trader to gain
the priority (see Section 3.2.1) associated with choosing a higher (respectively,
lower) price for a buy (respectively, sell) order. In markets where ϑ is extremely
small, there is little reason for a trader to submit a buy (respectively, sell) limit
order at a price p where there are already other limit orders. Instead, the trader
can gain priority over such limit orders very cheaply, by choosing the price p+ϑ
(respectively, p−ϑ) for their limit order. Such a setup leads to very small volumes
at any level in the LOB, including the best quotes b(t) and a(t), and therefore leads
to extremely frequent changes in b(t) and a(t).

Some market commentators argue that small tick sizes make it difficult for
traders to monitor the state of the market in real time. In September 2012, the
electronic FX trading platform EBS increased the size of ϑ for most of its currency
pairs, to “help thicken top of book price points, increase the cost of top-of-book
price discovery, and improve matching execution in terms of percent fill amounts”.
However, as we will see at many times throughout the book, an asset’s tick size can
influence order flow in many different ways, some of which are quite surprising.
Therefore, understanding how changing the tick size will influence future market
activity is far from straightforward.

Even for LOBs with the same or similar resolution parameters υ0 or ϑ, these can
represent vastly different fractions of the typical trade size and price. For example,
both the Priceline Group and the Amyris Inc. stocks are traded on NASDAQ with
ϑ = $0.01, yet the typical price for Priceline exceeds $1000.00 whereas the typical
price for Amyris is close to $1.00. Therefore, ϑ constitutes a much larger fraction
of the typical trade size for Amyris than it does for Priceline. For this reason, it is
sometimes useful to consider the relative tick size ϑr, which is equal to the tick
size ϑ divided by the mid-price m(t) for the given asset. For example, the price of
Priceline Group was on the order of $1000 in 2014, corresponding to a very small
relative tick size ϑr of 10−5.
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3.1.6 Relative Prices

Because the activity of a single market participant is driven by his/her trading
needs, individual actions can appear quite erratic. However, when measured in a
suitable coordinate frame that aggregates order flows from many different market
participants, robust statistical properties of order flow and LOB state can emerge
from the ensemble – just as the ideal gas law emerges from the complicated motion
of individual molecules.

Most studies of LOBs perform this aggregation in same-side quote-relative
coordinates, in which prices are measured relative to the same-side best quote.
Specifically, the same-side quote-relative price of an order x at time t is (see
Figure 3.1)

d(px, t) :=

{
b(t)− px, if x is a buy limit order,
px − a(t), if x is a sell limit order.

(3.5)

In some cases (such as when measuring volume profiles, as in Section 4.7), using
same-side quote-relative coordinates can cause unwanted artefacts to appear in
statistical results. Therefore, instead of measuring prices relative to the same-side
best quote, it is sometimes more useful to measure prices in opposite-side
quote-relative coordinates. The opposite-side quote-relative price of an order x
at time t is (see Figure 3.1)

d†(px, t) :=

{
a(t)− px, if x is a buy limit order,
px − b(t), if x is a sell limit order.

(3.6)

The difference in signs between the definitions for buy and sell orders in
Equations (3.5) and (3.6) ensures that an increasing distance from the reference
price is always recorded as positive. By definition, all limit orders have a
non-negative same-side quote-relative price and a strictly positive opposite-side
quote-relative price at all times. Same-side and opposite-side quote-relative prices
are related by the bid–ask spread s(t):

d†(px, t) = d(px, t)+ s(t).

The widespread use of quote-relative coordinates is motivated by the notion
that market participants monitor b(t) and a(t) when deciding how to act. There
are many reasons why this is the case. For example, b(t) and a(t) are observable
to all market participants in real time, are common to all market participants, and
define the boundary conditions that dictate whether an incoming order x is a limit
order (px < a(t) for a buy order or px > b(t) for a sell order) or a market order
(px ≥ a(t) for a buy order or px ≤ b(t) for a sell order). Therefore, the bid and the
ask constitute suitable reference points for aggregating order flows across different
market participants.
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Quote-relative coordinates also provide a useful benchmark for understanding
LOB activity. When studying LOBs, it is rarely illuminating to consider the actual
price px of an order, because this information provides no context for x in relation
to the wider activity in L (t). As we show in Chapter 4, by instead studying the
quote-relative price of an order, it is possible to understand the role of the order in
relation to the other orders in the market.

3.1.7 The Volume Profile

Most traders assess the state of L (t) via the volume profile (or “depth profile”).
The buy-side volume at price p and at time t is

V+(p, t) :=
∑

{x∈B(t)|px=p}
υx. (3.7)

The sell-side volume at price p and at time t, denoted V−(p, t), is defined similarly
using A(t). The volume profile at time t is the set of volumes at all prices p,
{V± (p, t)}.

Because b(t) and a(t) vary over time, quote-relative coordinates provide a useful
approach to studying the volume profile through time, akin to changing reference
frame in physics.

3.1.8 Price Changes in an LOB

In an LOB, the rules that govern matching dictate how prices evolve through time.
Consider a buy (respectively, sell) order x = (±1, px,υx, tx) that arrives at time t.

• If px ≤ b(t) (respectively, px ≥ a(t)), then x is a limit order. It does not cause b(t)
or a(t) to change.

• If b(t) < px < a(t), then x is also a limit order. It causes b(t) to increase
(respectively, a(t) to decrease) to px at time tx.

• If px ≥ a(t) (respectively, px ≤ b(t)), then x is a market order that matches to
one or more buy (respectively, sell) limit orders upon arrival. Whenever such a
matching occurs, it does so at the price of the limit orders, which can lead to
“price improvement” (compared to the price px of the incoming market order).
Whether or not such a matching causes b(t) (respectively, a(t)) to change at time
tx depends on the volume available at the bid V+(b(tx), t) (respectively, at the ask
V−(a(tx), t)) compared to υx. In particular, the new bid-price b(tx) immediately
after the arrival of a sell market order x is set as follows. One first computes the
largest price b∗ such that such that all the volume between b∗ and b(tx) is greater
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Figure 3.2. A specific example of an LOB, as presented in Table 3.1.

than or equal to υx:

b(tx)∑
p=b∗

V+(p, t) ≥ υx,

b(tx)∑
p=b∗+ϑ

V+(p, t) < υx.

Then b(tx) is equal to b∗ whenever px ≤ b∗ and to the limit price px otherwise. In
the latter case, the market order is not fully executed.
Similarly, the new ask-price a(tx) immediately after the arrival of a buy market
order x is the smallest of a∗ or px, where:

a∗∑
p=a(tx)

V−(p, t) ≥ υx,

a∗−ϑ∑
p=a(tx)

V−(p, t) < υx.

To illustrate the above expressions, Table 3.1 lists several possible market events
that could occur to the LOB displayed in Figure 3.2 and the resulting values of
b(tx),a(tx),m(tx) and s(tx) after their arrival. Figure 3.3 shows how the arrival of
an order (+1,$1.55,3, tx), as described by the third line of Table 3.1, would impact
the LOB shown in Figure 3.2.

3.2 Practical Considerations

Many practical details of trading vary considerably across LOB platforms. In this
section, we highlight some of these practical differences and discuss how they
can influence both the temporal evolution of an LOB and the actions of traders
within it.
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Table 3.1. Example to illustrate how specified order arrivals would affect
prices in the LOB in the top panel of Figure 3.3. The tick size is ϑ = 0.01 and
the lot size is υ0 = 1 (see Section 3.1.5).

Arriving order x Values before arrival (USD) Values after arrival (USD)

(εx, px,υx, tx) b(tx) a(tx) m(tx) s(tx) b(tx) a(tx) m(tx) s(tx)

(+1,$1.48,3, tx) 1.50 1.53 1.515 0.03 1.50 1.53 1.515 0.03
(+1,$1.51,3, tx) 1.50 1.53 1.515 0.03 1.51 1.53 1.52 0.02
(+1,$1.55,3, tx) 1.50 1.53 1.515 0.03 1.50 1.54 1.52 0.04
(+1,$1.55,5, tx) 1.50 1.53 1.515 0.03 1.50 1.55 1.525 0.05
(−1,$1.54,4, tx) 1.50 1.53 1.515 0.03 1.50 1.53 1.515 0.03
(−1,$1.52,4, tx) 1.50 1.53 1.515 0.03 1.50 1.52 1.51 0.02
(−1,$1.47,4, tx) 1.50 1.53 1.515 0.03 1.48 1.53 1.505 0.05
(−1,$1.50,4, tx) 1.50 1.53 1.515 0.03 1.49 1.50 1.495 0.01
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Figure 3.3. An illustration of how the arrival of an order (+1,$1.55,3, tx), as
described by the third line of Table 3.1, would impact the LOB shown in
Figure 3.2. The dashed boxes denote the limit orders that match to the incoming
market order, and that are therefore removed from the LOB. The ask-price
immediately after the market order arrival is a(tx) = $1.54.
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3.2.1 Priority Rules

As shown in Figure 3.1, several different limit orders can reside at the same price
at the same time. Much like priority is given to limit orders with the best (i.e.
highest buy or lowest sell) price, LOBs also employ a priority system for limit
orders within each individual price level.

By far the most common rule currently used is price-time priority. That is, for
buy (respectively, sell) limit orders, priority is given to the limit orders with the
highest (respectively, lowest) price, and ties are broken by selecting the limit order
with the earliest submission time tx.

Another priority mechanism, commonly used in short-rate futures markets, is
pro-rata priority. Under this mechanism, when a tie occurs at a given price, each
relevant limit order receives a share of the matching equal to its fraction of the
available volume at that price. Traders in pro-rata priority LOBs are faced with the
substantial difficulty of optimally selecting limit order sizes: posting limit orders
with larger sizes than the quantity that is really desired for trade becomes a viable
strategy to gain priority.

Different priority mechanisms encourage traders to behave in different ways.
Price-time priority encourages traders to submit limit orders early (even at prices
away from the best quotes) and increase the available liquidity. Indeed, without
a priority mechanism based on time, there is no incentive for traders to show
their hand by submitting limit orders earlier than is absolutely necessary. Pro-rata
priority rewards traders for placing larger limit orders and thus for providing
greater liquidity at the best quotes. Because they directly influence the ways in
which traders act, priority mechanisms play an important role, both for models
and for market regulation.

3.2.2 Order Types

The actions of traders in an LOB can be expressed solely in terms of the submission
or cancellation of orders of elementary size υ0. For example, a trader who sends a
sell market order of 4υ0 units of the traded asset in the LOB displayed in Figure 3.2
can be regarded as submitting two sell orders of size υ0 at the price $1.50, one sell
order of size υ0 at the price $1.49, and one sell order of size υ0 at the price $1.48.
Similarly, a trader who posts a sell limit order of size 4υ0 at the price $1.55 can be
regarded as submitting four sell orders of size υ0 at a price of $1.55 each.

Because all traders’ actions can be decomposed in this way, it is customary
to study LOBs in terms of these simple building blocks. In practice, many
platforms offer traders the ability to submit a wide assortment of order types,
each with complicated rules regarding its behaviour. Although such orders are
rarely discussed in the literature on LOBs (because it is possible to decompose
the resulting order flow into elementary limit and/or market orders), in practice
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their use is relatively widespread. We therefore provide a brief description of the
main order types.4

• Stop orders: A stop order is a buy (respectively sell) market order that is sent as
soon as the price of a stock reaches a specified level above (respectively below)
the current price. This type of order is used by investors who want to avoid big
losses or protect profits without having to monitor the stock performance. Stop
orders can also be limit orders.

• Iceberg orders: Investors who wish to submit a large limit order without being
detected can submit an iceberg order. For this order type, only a fraction of the
order size, called peak volume, is publicly disclosed. The remaining part is not
visible to other traders, but usually has lower time priority, i.e. regular limit
orders at the same price that are submitted later will be executed first. When the
publicly disclosed volume is filled and a hidden volume is still available, a new
peak volume enters the book. On exchanges where iceberg orders are allowed,
their use can be quite frequent. For example, according to studies of iceberg
orders on Euronext, 30% of the book volume is hidden.

• Immediate-or-cancel orders: If a market participant wants to profit from a
trading opportunity that s/he expects will last only a short period of time, s/he
can send an “immediate-or-cancel” (IOC) order. Any volume that is not matched
is cancelled, such that it never enters the LOB, and leaves no visible trace unless
it is executed. In particular, if zero volume is matched, everything is as if the
IOC order had never been sent. This order type is similar to the all-or-nothing
(or fill-or-kill) order. Orders of the latter are either executed completely or are
not executed at all. In this way, the investor avoids revealing his/her intention to
trade if the entire quantity was not available.

• Market-on-close orders: A market-on-close (MOC) order is a market order that
is submitted to execute as close to the closing price as possible. If a double-sided
closing auction takes place at the end of the day (such as on the New York Stock
Exchange (NYSE) or the Tokyo Stock Exchange), the order will participate
in the auction. Investors might want to trade at the close because they expect
liquidity to be high.

3.2.3 Opening and Closing Auctions

Many exchanges are closed overnight and suspend standard LOB trading at the
beginning and end of the trading day. During these two periods, volumes are so
large that LOB trading would be prone to instabilities, so exchanges prefer to use
an auction system to match orders. For example, the LSE’s flagship order book
SETS has three distinct trading phases in each trading day:

4 From Kockelkoren, J. (2010). Encyclopedia of quantitative finance. Wiley.
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• a ten-minute opening auction between 07:50 and 08:00;
• a continuous trading period between 08:00 and 16:30 (during which the

standard LOB mechanism is used); and
• a five-minute closing auction between 16:30 and 16:35.

During the opening and closing auctions, traders can place orders as usual, but no
orders are matched. Due to the absence of matching, the highest price among buy
orders can exceed the lowest price among sell orders. All orders are stored until
the auction ends. At this time, for each price p at which there is non-zero volume
available, the trade-matching algorithm calculates the total volume Q(p) of trades
that could occur by matching buy orders with a price greater than or equal to p
to sell orders with a price less than or equal to p (this is precisely the mechanism
described by Equation (1.4)). It then calculates the auction price:

p∗ = argmax
p

Q(p). (3.8)

In contrast to standard LOB trading, all trades take place at the same price p∗.
Given p∗, if there is a smaller volume available for sale than there is for purchase
(or vice-versa), ties are broken using time priority.

Throughout the opening and closing auctions, all traders can see what the value
of p∗ would be if the auction were to end at that moment. This allows all traders
to observe the evolution of the price without any matching taking place until the
process is complete, and to revise their orders if needed. Such a price-monitoring
process is common to many markets.

Take-Home Messages

(i) Most modern markets use limit order books (LOBs) to facilitate trade.
LOBs allow liquidity takers to conduct transactions with the liquidity
posted by liquidity providers.

(ii) In an LOB, traders interact via orders. An order consists of a direction
(buy/sell), a price, a volume, and a submission time. The price and
volume must be multiples of the tick and lot sizes, respectively.

(iii) Patient orders (i.e. orders that do not trigger an immediate transaction,
and that are therefore added to the LOB) are called limit orders.
Impatient orders (i.e. orders that trigger an immediate transaction
against an existing limit order) are called market orders.

(iv) At any given time, the state of an LOB is simply the set of all the limit
orders. The price of the best buy limit order is called the bid-price b,
and the price of the best sell limit order is called the ask-price a.
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(v) The quantity m := (b+ a)/2 is called the mid-price. The quantity s :=
a− b is called the bid–ask spread.

(vi) The mid-price and bid–ask spread both change whenever the bid-price
or ask-price change. Such changes can be caused by the disappearance
of the corresponding limit orders, or by the arrival of a new limit order
inside the spread.

(vii) When a market order arrives, limit orders are executed according
to priority rules. Limit orders with better prices (i.e. a higher buy
price or lower sell price) always have priority over limit orders with
worse prices. In case of price equality, other rules (such as time- or
size-priority) are used to break the tie. In this way, an LOB can be
regarded as a queuing system, with limit orders residing in queues at
different prices.
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Empirical Properties of Limit Order Books

When my information changes, I alter my conclusions. What do you do, sir?
(John Maynard Keynes)

Many LOBs record comprehensive digital transcriptions of their participants’
submissions and cancellations of orders. These event-by-event records describe the
temporal evolution of visible liquidity at the microscopic level of detail. During
the past two decades, a vast number of empirical studies have analysed LOB
data to address a wide array of questions regarding the high-frequency activity
and price formation in financial markets. This work has served to illustrate many
important aspects of the complex interplay between order flow, transactions and
price changes. In recent years, several survey articles and books (see the list of
references at the end of this chapter) have established new microstructural stylised
facts and have highlighted both similarities and differences between different
assets and different market organisations.

Although the breadth of such empirical work is substantial, an important
consideration when reviewing previous studies of LOBs is that the high-frequency
actors in financial markets have evolved rapidly in recent years. Market-making
strategies, trading algorithms, and even the rules governing trade have changed
over time, so old empirical observations may not accurately describe current LOB
activity. Therefore, maintaining a detailed and up-to-date understanding of modern
financial markets requires empirical analysis of recent, high-quality LOB data.

In this chapter, we present some up-to-date statistical results regarding order
flow and LOB state for a collection of stocks that we study throughout the book:1

PCLN (Priceline Group Inc.), TSLA (Tesla Motors Inc.), CSCO (Cisco Systems
Inc.) and INTC (Intel Corp.). The stocks CSCO and INTC are large-tick stocks
(i.e. with a spread close to the minimum value, s ≈ ϑ) and the stocks PCLN and
TSLA are small-tick stocks (i.e. with a spread much larger than the tick, s	 ϑ)

1 For a detailed discussion of our data and sample, see Appendix A.1.
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(see Section 4.8 for more precise statements). As we will see at several points
throughout this chapter, the statistical properties of large-tick stocks and small-tick
stocks can be radically different.

4.1 Summary Statistics

Table 4.1 lists a range of summary statistics that describe the four stocks’ aggregate
activity and spread. A few notable features, common to all stocks, should be
highlighted:

(i) The daily turnover (as a fraction of market capitalisation) is of the order of
0.5%. This result in fact holds across a wide selection of international stocks.
This number has roughly doubled from 1995 to 2015.

(ii) The total volume displayed in the LOB within 1% of the mid-price (roughly
half the daily volatility) is between 1% and 3% of the daily traded
volume.

(iii) The activity at the best quotes takes place at a sub-second time scale
(sometimes milliseconds), with much more activity for large-tick stocks than
for small-tick stocks. This reflects the importance of queue position for
large-tick stocks (see Section 21.4).

(iv) The number of trade-through market orders (i.e. orders that match at several
different prices and therefore walk up the order book) is on the order of a few
percent for small-tick stocks, and a few per thousand for large-tick stocks.

Point (ii) shows that the total outstanding volume in the LOB at any instant
of time is only a small fraction of the total daily activity. This is a fundamental
observation that has important consequences for trading, as we will discuss in
Section 10.5.

4.2 Intra-day Patterns

Many properties of order flow and LOB state follow strong intra-day patterns,
which we illustrate in this section. It is important to bear these patterns in
mind when considering other order-flow and LOB statistics. For example, the
distribution of the total volume at the best quotes will look very different when
pooling together different times of day than when restricting observations to a
specific time window. For the statistics that we calculate throughout the remainder
of this chapter, we restrict our attention to market activity between 10:30 and
15:00 local time, where most quantities have an approximately flat average
profile.
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4.2.1 Market Activity

In Figure 4.1, we plot the mean total volume of executed market orders (MO) and
submitted limit orders (LO) during two-minute intervals throughout the trading
day. In both cases, the activity exhibits a U-shape profile, or better a “J-shape
profile” with asymmetric peaks at the beginning and end of the day and a minimum
at around midday. Activity during the busiest periods is about four times greater
than activity during the quietest periods.

The J-shaped profile is similar across all stocks, independently of the tick size
and market capitalisation. Why should this be so? One possible explanation is
that the intense spike shortly after the market opens is caused by company news
revealed during the previous overnight period, when markets are closed. The spike
at the close is possibly due to traders who previously hoped to get a better deal
having to speed up to finish their trades for the day. Another possible explanation
is that individual traders implement non-uniform execution patterns to minimise
their price impact (see Section 21.2).

Figure 4.2 shows how the volume at the best quotes varies according to the time
of day. Here, we see a striking difference between large-tick and small-tick stocks:
whereas small-tick stocks exhibit a J-shaped profile similar to those in Figure 4.1,
large-tick stocks show a lack of liquidity in the early minutes of trading, followed
by a slow increase throughout the day, then a final, steep rise shortly before the
end of the trading day. The volumes available just before close are about 20 times
larger than those just after open.

In each of Figures 4.1 and 4.2, the statistics are (within statistical errors)
symmetric between buy orders and sell orders, so we only present the average
of the two. Of course, this does not imply that this symmetry holds for a given
time on a given day, where order imbalance can be locally strong, but rather that
the symmetry emerges when averaging market activity over long times.

4.2.2 Bid-Ask Spread

Figure 4.2 also shows the intra-day average values of the bid–ask spread s(t) =
a(t) − b(t). The spread narrows throughout the trading day, quite markedly for
small-tick stocks and much more mildly for large-tick stocks. As we will discuss
in Chapter 16, the narrowing of the bid–ask spread is often interpreted as a
reduction of the adverse selection faced by liquidity providers, as overnight news
gets progressively digested by market participants.

In summary, Figure 4.2 paints an interesting picture that suggests that liquidity
is much more scarce at the open than it is at the close. Compared to submitting
a limit order, the average cost of immediacy (i.e. of submitting a market order) is
much larger in the morning than it is later in the day: not only is the spread wider,
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Figure 4.1. Total volume of (top panels) limit order and (bottom panels) market
order arrivals during each two-minute interval throughout the trading day, for (left
panels) the large-tick stocks INTC and CSCO, and (right panels) the small-tick
stocks TSLA and PCLN. The markers show the average over all trading days and
the shaded regions show the corresponding lower and upper quartiles.

but market orders need to penetrate deeper into the LOB to find their requested
volume.

4.3 The Spread Distribution

Figure 4.3 shows the spread distribution for a selection of different stocks. As the
figure illustrates, the distributions are very different for small-tick and large-tick
stocks. For large-tick stocks, the distribution is sharply peaked at the minimum
spread (which is equal to one tick, ϑ), with rare moments when the spread opens
to 2ϑ or, in extreme cases, 3ϑ (or larger). For small-tick stocks, by contrast, the
distribution is much wider, and the value of s(t) can vary between one tick and
several tens of ticks. The upper tail of the distribution decays approximately like
an exponential.
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Figure 4.2. (Top panels) Average total volume of active orders at the best quotes
and (bottom panels) average bid–ask spread, during each two-minute interval
throughout the trading day for (left panels) the large-tick stocks INTC and CSCO,
and (right panels) the small-tick stocks TSLA and PCLN. The markers show the
average over all trading days and the shaded regions show the corresponding
lower and upper quartiles.

Note that the bid–ask spread distribution can be measured in several different
ways, such as at random instants in calendar time, at random instants in event-time,
immediately before a transaction, etc. These different ways of measuring the
spread do not yield identical results (see Figure 4.4). In a nutshell, the spread
distribution is narrower when measured before transactions than at random
instants. This makes sense, since liquidity takers carefully select the submission
times of their market orders to benefit from relatively tight spreads.

4.4 Order Arrivals and Cancellations

Provided that their sizes do not exceed the volume available at the best quote,
market orders can only be executed at the best bid or at the best ask. Limit orders,
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Figure 4.3. Empirical distributions of the bid–ask spread s(t) = a(t) − b(t),
measured at the times of events at the best quotes, for the stocks INTC, CSCO,
FB, AAPL, GILD, NFLX, TSLA and PCLN. The stocks are ordered (from top
left to bottom right) by their relative tick sizes.

on the other hand, can arrive and be cancelled at any of a wide range of prices. It
is thus interesting to estimate the distributions of relative prices for arriving and
cancelled limit orders, because (together with the arrivals of market orders) they
play an important role in determining the temporal evolution of the state L (t) of
the LOB (see for example Chapter 8).

Figure 4.5 shows the distribution of d, the same-side quote-relative prices
for arriving limit orders, again for our selection of large-tick and small-tick
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stocks. In both cases, the deposition probability peaks at the best quotes, but
there is also significant activity deeper in the LOB. Indeed, when plotting the
distributions in semi-logarithmic coordinates, it becomes clear that the deposition
probabilities decay rather slowly2 with increasing relative price d. For large-tick
stocks, the decay of the distribution is approximately monotonic. For such stocks,
the probability of observing a spread s(t) > ϑ is in fact very small (see Figure 4.3),
and when this happens, the overwhelming probability is that the next limit order
will arrive within the spread. For small-tick stocks, by contrast, the LOB is usually
sparse, with many empty price levels. There is also a secondary peak in the
distribution at a distance comparable to the bid–ask spread. This suggests that it
is the value of the spread itself, rather than the tick size, that sets the typical scale
of the gaps between non-empty price levels in the LOB. Note that there is also
substantial intra-spread activity for small-tick stocks (i.e. for d < 0), which makes
sense because there are typically many empty price levels within the spread.

One can also study the corresponding distributions for limit order cancellations.
For all non-negative relative prices, these plots (not shown) are remarkably similar
to the distributions of limit order arrivals in Figure 4.5. This suggests that, to a first
approximation, the cancellation rate is simply proportional to the arrival rate. One
possible explanation for this result is that much LOB activity is associated with
many limit orders being placed then rapidly cancelled.

2 Several older empirical studies have reported this decay to follow a power law.
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4.5 Order Size Distributions

Figure 4.6 shows the empirical cumulative density functions (ECDFs) for the sizes
of limit orders and market orders, expressed in both lots and US dollars. The plot
is in log-log coordinates, to emphasise that these distributions are extremely broad.
For both limit and market orders, the most common order sizes are relatively small
(a few thousands of dollars), but some orders are much larger. The upper tail of the
ECDF appears to decay approximately according to a power law, with an exponent
scattered around −5/2 (as represented by the dotted line). Although this power-law
behaviour has been reported by empirical studies of many different markets, the
value of the tail exponent varies quite significantly across these studies. Despite
their quantitative differences, the same key message applies: order sizes are not
clustered around some average size, but rather are distributed over a very broad
range of values.

4.6 Volume at the Best Quotes

Figure 4.7 shows the ECDFs for the total volumes Vb and Va available at the
bid- and ask-prices, respectively. For both small-tick and large-tick stocks, the
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Figure 4.6. Empirical cumulative density functions (ECDFs) for the sizes of (top
panels) market orders and (bottom panels) limit orders, expressed in (left column)
number of shares and (right column) US dollars, for INTC, CSCO, TSLA and
PCLN. The plots are in doubly logarithmic coordinates, such that power-law
distributions appear as straight lines. The thin dotted line has slope −5/2.

distributions are approximately symmetric for buy and sell orders, and the tails
of the distributions are similar to those of the distributions of order sizes in
Figure 4.6. This makes sense because a single, large limit order arriving at b(t)
(respectively, a(t)) contributes a large volume to Vb (respectively, Va). For small
volumes, however, the distributions are quite different from those in Figure 4.6,
because while small limit order sizes are common, observing a small value of Vb

or Va is much rarer. This is because the total volume available at b(t) and a(t) is
typically comprised of several different limit orders.

As for the spread distribution, the distribution of queue volumes can be
measured in calendar-time, in event-time or immediately before a market order.
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Figure 4.7. ECDFs for the total volumes available at the best quotes, for INTC,
CSCO, TSLA and PCLN, expressed in (left panel) number of shares and (right
panel) US dollars.

We again observe conditioning effects: for small-tick stocks, the volume at the
best quote is higher immediately before being hit by a market order, indicating
that liquidity takers choose to submit their orders when the opposite volume is
relatively high. However, for large-tick stocks, the volume of the queue is smaller
before transactions. In this case, as we discuss in Section 7.2, the queue volume
itself conveys significant information about the direction of future price changes,
because when liquidity is small at the ask (bid) and large at the bid (ask), the price
typically moves up (down, respectively). When the queue is small, liquidity takers
rush to take the remaining volume before it disappears.

4.7 Volume Profiles

Figure 4.8 shows the mean relative volume profiles, measured as a function of
the distance to the opposite-side quote d† (see Section 3.1.6). For this figure, and
throughout this section, we use opposite-side distances because (by definition)
there is always a non-zero volume available at the same-side best quotes. This
causes a spurious sharp peak in the mean relative volume profile when measured
as a function of the same-side distance d, which disappears for opposite-side
distances.

The mean relative volume profiles first increase for small distances, then reach
a maximum before decreasing very slowly for large distances. This shows that
there is significant liquidity deep in the book even at very large distances from
the best quotes. We also observe strong round-number effects: liquidity providers
seem to prefer round distances (from the opposite best) for their limit orders, such
as multiples of half dollars.
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Figure 4.8. Mean relative volume profiles (measured as a function of the distance
d† to the opposite-side quote) of the (dash-dotted curves) bid side and the (solid
curves) ask side of the LOBs of (top panels) the large-tick stocks INTC and
CSCO, and (bottom panels) the small-tick stocks TSLA and PCLN.

To what extent are these average relative volume profiles representative of a
typical volume profile snapshot? To address this question, we also plot snapshots of
the volume profiles, taken at 10:30:00 on 3 August 2015, in Figure 4.9. In contrast
to the mean relative volume profiles, for which liquidity is (on average) available
over a wide range of consecutive prices, LOB snapshots tend to be sparse, in the
sense that they contain many prices with no limit orders. This effect is particularly
apparent for small-tick stocks, but less so for large-tick stocks (see Figure 4.5).

4.8 Tick-Size Effects

As we discussed in Section 3.1.5, the relative tick size ϑr varies considerably
across different assets. In this section, we illustrate several ways in which LOBs
with different relative tick sizes behave very differently. To illustrate our findings
on a wide range of different stocks, throughout this section we consider a sample
of 120 different US stocks traded on NASDAQ, for which the (non-relative) tick
size is fixed to ϑ= $0.01 but for which the relative tick size ϑr varies considerably,
because prices themselves can vary between a few cents (so called “penny stocks”)
and thousands of dollars (see, e.g., PCLN in Table 4.1).

4.8.1 Tick and Spread

First, we address how ϑr impacts the mean bid–ask spread 〈s〉 (see Figure 4.10).
As the figure illustrates, when ϑr is small (i.e. when the stock price is large), the
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Figure 4.10. Mean bid–ask spread versus the mean share price, for a sample
of 120 different US stocks traded on NASDAQ. The tick size on NASDAQ
constrains the spread from below (dashed black line).

average spread is roughly proportional to the price of the stock itself. Empirically,
the relationship 〈s〉 � 0.001×m(t) appears to hold approximately. When the price
is smaller than $10, this proportionality breaks down, because the spread cannot be
smaller than ϑ = $0.01. The mean relative spread is thus much larger for large-tick
stocks.



4.9 Conclusion 71

10−4

10−3

10−2

10−1

10−5 10−4 10−3 10−2

V
ol

um
e 

at
 b

es
t /

 D
T

V

Relative tick size

Figure 4.11. Average ratio between the daily mean volume at the best quotes
and the daily traded volume versus the relative tick size ϑr, for a sample of 120
different US stocks traded on NASDAQ.

4.8.2 Tick and Volume at Best

Second, we address how ϑr impacts the mean depths at the best quotes 〈Vb〉 and
〈Va〉, expressed as a fraction of the daily traded volume (see Figure 4.11). For
small-tick stocks, 〈Vb〉 and 〈Va〉 are about � 1% of the daily traded volume. For
very large-tick stocks, by contrast, 〈Vb〉 and 〈Va〉 can reach � 10% of the daily
traded volume. Note that very small relative tick sizes correspond to very large
stock prices, since the absolute tick is fixed to ϑ = $0.01. This can explain why
the ratio in Figure 4.11 appears to saturate for the very small-tick stocks, as a
single limit order containing 100 shares of PCLN (our smallest-tick stock) already
corresponds to a volume of $120,000!

4.8.3 Tick and Volume of Trades

Finally, we consider how ϑr impacts the ratio of the average volume of a market
order to the average volume at the best quotes (see Figure 4.12). For large-tick
stocks, market orders are typically small (< 10%) compared to the mean volume at
the best quotes. For small-tick stocks, by contrast, arriving market orders typically
consume more than half of the outstanding volume (which is itself quite small in
this case).

4.9 Conclusion

In this chapter, we have presented a selection of empirical properties of order
flow and LOB state. Some of these statistical properties vary considerably across
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Figure 4.12. Average ratio between the daily mean market order size and the daily
mean volume at the best quotes versus the relative tick size ϑr, for a sample of
120 different US stocks traded on NASDAQ.

different stocks, whereas others appear to be more universal. The most important
feature distinguishing different stocks is the relative tick size ϑr, which itself varies
considerably across different stocks – even among stocks with the same (absolute)
tick size ϑ.

Although the statistics in this chapter provide an interesting glimpse into the
behaviour of real LOBs, they are just the first small step towards a more compre-
hensive understanding of real market activity. Developing such an understanding
requires addressing not only specific LOB properties in isolation, but also the
interactions between them. In the subsequent chapters, we will consider some
of the most relevant questions to help quantify both these interactions and the
complex phenomena that emerge from them.

Take-Home Messages

(i) At any instant of time, the total volume in an LOB is a small fraction
of the corresponding daily traded volume.

(ii) When measured over a suitably long time horizon, all market statistics
are approximately symmetric between buys and sells.

(iii) Many market quantities present a strong average daily profile:
volumes and activity exhibit a J-shaped pattern, with most activity
happening close to the open and close of the market, whereas the
spread undergoes a steep decrease after the open, then decreases more
gradually throughout the remainder of the day.
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(iv) For large-tick stocks, the spread is almost always equal to one tick.
Small-tick stocks show a broader distribution of spread values.

(v) Most activity takes place close to or inside the spread. This is partly
due to the fact that traders have little incentive to display publicly their
trading intentions long in advance (except to gain queue priority in the
case of large-tick stocks).

(vi) The size distributions of limit orders, market orders and best queue
volumes have heavy tails.
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Introduction

In this part, we will start our deep-dive into the mechanisms of price formation
at the most microscopic scale. In the coming chapters, we will zoom in – in both
space and time – to consider how the interactions between single orders contribute
to the price-formation process in an LOB.

In line with our overall effort to start with elementary models before adding
any layers of complexity, we will initially focus on purely stochastic, rather than
strategic, behaviours. In short, we will assume that agents’ actions are governed by
simple rules that can be summarised by stochastic processes with rate parameters
that depend only on the current state of the world – or, more precisely, on the
current state of the LOB.

We will start with the study of the volume dynamics of a single queue of orders
at a given price. Such a queue grows due to the arrival of new limit orders, or
shrinks due to limit orders being cancelled or executed against incoming market
orders. We will investigate the behaviour of the average volume of a queue, its
stationary distribution and its time to depletion when starting from a given size.
We will repeat each of these analyses with different assumptions regarding the
behaviour of the order flows, to illustrate how these quantities depend on the
specific details of the modelling framework.

From there, extending the model to account for the joint behaviour of the bid and
ask queues will be a natural next step. We will introduce the “race to the bottom”
between the best bid and ask queues. This race dictates whether the next price
move will be upwards (if the ask depletes first) or downwards (if the bid depletes
first). We will then fit these order flows directly to empirical data, in a model-free
attempt to analyse the interactions between order flow and LOB state.

We will end this modelling effort by introducing a stochastic model for the
whole LOB. This approach, which is often called the Santa Fe model, will
allow us to make some predictions concerning the LOB behaviour within and
beyond the bid–ask spread. Comparison with real-world data will evidence that
such a “zero-intelligence” approach of a purely stochastic order flow succeeds at
explaining some market variables, but fails at capturing others.

This part teaches us an important lesson: although useful and intuitive, simple,
Markovian models cannot on their own fully account for the more complex
phenomena that occur in real LOBs. More realistic approaches will require us to
introduce additional ingredients – like strategies and long-range dependences – as
we will see in the subsequent parts.
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5

Single-Queue Dynamics: Simple Models

Nothing is more practical than a good theory.
(L. Boltzmann)

Modelling the full dynamics of an LOB is a complicated task. As we discussed in
Chapter 3, limit orders can be submitted or cancelled at a wide range of different
prices, and can also be matched to incoming market orders. Limit orders of many
different sizes often reside at the same price level, where they queue according to
a specified priority system (see Section 3.2.1). The arrival and cancellation rates of
these orders also depend on the state of the LOB, which induces a feedback loop
between order flow and liquidity and thereby further complicates the problem. Due
to the large number of traders active in some markets, and given that each such
trader can own many different limit orders at many different prices, even keeping
track of an LOB’s temporal evolution is certainly a challenge.

Despite these difficulties, there are many clear benefits to developing and
studying LOB models. For example, analysing the interactions between different
types of orders can help to provide insight into how best to act in given market
situations, how to design optimal execution strategies, and even how to address
questions about market stability. Therefore, LOB modelling attracts a great deal of
attention from practitioners, academics and regulators.

Throughout the next four chapters, we introduce and develop a framework for
LOB modelling. In the present chapter, we begin by considering the core building
block of our approach: the temporal evolution of a single queue of limit orders,
using highly simplified models. In Chapter 6, we extend our analysis to incorporate
several important empirical facts into our theoretical description of single queues.
In Chapter 7, we consider the joint dynamics of the best bid- and ask-queues
together, from both a theoretical and an empirical point of view. Finally, in
Chapter 8, we discuss how to extend these models to describe the dynamics of
a full LOB. In all of these chapters, we aim to derive several exact results within

78
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the framework of simplified stochastic models, and approximate results for more
realistic models calibrated to market data.

5.1 The Case for Stochastic Models

An immediate difficulty with modelling LOBs concerns the reasons that order
flows exist at all. At one extreme lies the approach in which orders are assumed to
be submitted by perfectly rational traders who attempt to maximise their utility by
making trades in markets driven by exogenous information. This approach has
been the starting point for many microstructural models within the economics
community. However, this extreme assumption has come under scrutiny, both
because such models are (despite their mathematical complexity) unable to
reproduce many salient empirical stylised facts and because perfect rationality
is difficult to reconcile with direct observations of the behaviour of individuals,
who are known to be prone to a variety of behavioural and cognitive biases.
Therefore, motivating order submissions in a framework of perfect rationality is
at best difficult and at worst misleading.

At the other extreme lies an alternative approach, in which aggregated order
flows are simply assumed to be governed by stochastic processes. Models
that adopt this approach ignore the strategies employed by individual market
participants, and instead regard order flow as random. Due to its exclusion of
explicit strategic considerations, this approach is often called zero-intelligence
(ZI) modelling. In a zero-intelligence LOB model, order flow can be regarded as a
consequence of traders blindly following a set of stochastic rules without strategic
considerations.

The purpose of ZI models is not to claim that real market participants act without
intelligent decision making. Instead, these models serve to illustrate that in some
cases, the influence of this intelligence may be secondary to the influence of the
simple rules governing trade.

In many situations, ZI frameworks are too simplistic to reproduce the complex
dynamics observed in real markets. In some cases, however, ZI models serve
to illustrate how some seemingly non-trivial LOB properties or behaviours can
actually emerge from the interactions of simple, stochastic order flows.

Much like perfect rationality, the assumptions inherent in ZI models are extreme
simplifications that are inconsistent with some empirical observations. However,
the ZI approach has the appeal of leading to quantifiable models without the
need for auxiliary assumptions. Therefore, we adopt this approach for the simple
benchmark LOB models that we consider in the following chapters. ZI models
can often be extended to incorporate “boundedly rational” considerations, which
serve to improve their predictive power by incorporating simple constraints that
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ensure the behaviour of traders acting within them is not obviously irrational, or to
remove obvious arbitrage opportunities.

5.2 Modelling an Order Queue

Given that an LOB consists of many different order queues at many different
prices, a sensible starting point for developing a stochastic model of LOB
dynamics is to first concentrate on just one such queue. This enables us to ignore
the interactions (including any possible correlations in order flow) between the
activity at different price levels. This is the approach that we take throughout
this chapter. Specifically, we consider the temporal evolution of a single queue of
orders that is subject to limit order arrivals, market order arrivals and cancellations.

Let V(t) denote the total volume of the orders in the queue at time t. Because we
consider only a single order queue, the models studied in this chapter can be used
for both the bid-queue and for the ask-queue. Assume that:

• all orders are of unit size υ0 = 1;
• limit orders arrive at the queue as a Poisson process with rate λ;
• market orders arrive at the queue as a Poisson process with rate μ;
• limit orders in the queue are cancelled as a Poisson process with some

state-dependent rate (which we will specify in the following sections).

Despite the apparent simplicity of this modelling framework, we will see
throughout the subsequent sections that even understanding the single-queue
dynamics created by these three interacting order flows is far from trivial, and
leads to useful insights about the volume dynamics at the best quotes.

5.3 The Simplest Model: Constant Cancellation Rate

To gain some intuition of the basic dynamics of the model in Section 5.2, we first
consider the case in which the probability per unit time that exactly one order in a
queue is cancelled is constant ν, independent of instantaneous queue length V(t).

For V ≥ 1, the model corresponds to the following stochastic evolution rules
between times t and t+ dt:{

V→ V + 1 with rate λdt (deposition),
V→ V − 1 with rate (μ+ ν)dt (execution + cancellation).

(5.1)

Intuitively, our model regards the queue volume as a random walker with
“position” V , with moves that occur as a Poisson process with rate (λ + μ + ν).
When a move occurs, the probability that it is an upward move is λ/(λ+μ+ν) and
the probability that it is a downward move is (μ+ ν)/(λ+μ+ ν).
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The case where the queue is empty requires further specification, because
executions and cancellations are impossible when V = 0. To keep our calculations
as simple as possible, we assume that as soon as the queue size depletes to zero,
the queue is immediately replenished with some volume V ≥ 1 of limit orders,
chosen from a certain distribution �(V). We return to this discussion at many points
throughout the chapter.

5.3.1 The Master Equation

To analyse our model in detail, we first write the master equation, which describes
the temporal evolution of the probability P(V, t) of observing a queue of length V
at time t. Counting the different Poisson events with their respective probabilities,
one readily obtains, for V ≥ 1:

∂P(V, t)
∂t

= −(λ+μ+ ν)P(V, t)+λP(V − 1, t)+ (μ+ ν)P(V + 1, t)+ J(t)�(V), (5.2)

where the assumption that the queue replenishes as soon as it reaches V = 0 implies
that P(V = 0, t) = 0. The probability per unit time of such depletion events is J(t),
which justifies the presence of the reinjection current (equal here to the exit flux)
J(t)�(V), which represents replenished queues with initial volume V .

Given a dynamic equation such as in Equation (5.2), it is often desirable to seek
a stationary solution Pst.(V), for which

∂P(V, t)
∂t

= 0.

In the stationary solution, the probability of observing a queue with a given length
V does not evolve over time. In this case, it must also hold that J(t) does not depend
on time.

When λ > μ+ ν, there cannot be any stationary state since the limit order arrival
rate is larger than the departure rate (see Equation (5.6) below). In other words,
there is a finite probability that the queue size grows unboundedly, without ever
depleting to 0. This behaviour is clearly unrealistic for bid- and ask-queues, so we
restrict our attention to the case where λ ≤ μ+ ν.

Let us first assume that the reinjection process is such that �(V) = 1 for V =
V0 and �(V) = 0 otherwise – in other words, that all newborn queues have the
same initial volume V0. To find the stationary solution in this case, we must solve
Equation (5.2) when the left-hand side is equal to 0 and when J(t) is equal to
some constant J0 that matches the exit flow. In this case, observe that the ansatz
f (V) = k+ aV is a solution, provided that

(μ+ ν)a2 − (λ+μ+ ν)a+λ = 0. (5.3)
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Equation (5.3) has two roots,

a+ = 1; a− =
λ

μ+ ν
≤ 1.

The solution that tends to zero at large V reads

Pst.(V ≤ V0) = A+ BaV
− ,

Pst.(V > V0) =CaV
− ,

with constants A, B, and C such that the following conditions hold:

(i) By considering V = 1, it must hold that

−(λ+μ+ ν)Pst.(1)+ (μ+ ν)Pst.(2) = 0,

or
Aλ = Ba−[(μ+ ν)a− − (λ+μ+ ν)],

which can be simplified further to A = −B.
(ii) By considering V = V0, it must hold that

J0 + (μ+ ν)[(C − B)aV0+1
− −A] = 0.

(iii) By considering the exit flux, it must hold that

J0 = (μ+ ν)Pst.(1) = (μ+ ν)(A+ Ba−).

(iv) By considering the normalisation of probabilities, it must hold that∑
V>0

Pst.(V) = 1.

Rearranging these equations yields

C = A(a−V0− − 1); J0 = A(μ+ ν−λ). (5.4)

Finally, the normalisation condition simplifies to

AV0 = 1. (5.5)

The stationary solution Pst.(V) then reads:

Pst.(V ≤ V0) =
1

V0

(
1− aV

−
)
,

Pst.(V > V0) =
1

V0

(
a−V0− − 1

)
aV
− .
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The average volume V̄ =
∑∞

V=1 VPst.(V) can be computed exactly for any V0, but
its expression is messy. It simplifies in the limit a− → 1, where it becomes:

V̄ ≈ (1− a−)−1 =
μ+ ν

μ+ ν−λ, (5.6)

independently of V0. This result clearly shows that the average volume diverges as
λ ↑ (μ+ ν), beyond which the problem admits no stationary state.

Beyond being a good exercise in dealing with master equations, the above
calculations also provide insight into how we might approach the more general
case, in which reinjection occurs not with some constant volume V0, but instead
with some arbitrary reinjection probability �(V0). By linearity of the equations,
we can solve this case as a linear superposition of the above solutions for
different values of V0, each with weight �(V0). In this case, the normalisation in
Equation (5.5) now reads:

A
∑
V0

V0 �(V0) = 1. (5.7)

How might we choose the function �? One possible choice is simply to
self-consistently use the stationary distribution, Pst.(V). This corresponds to the
simplifying assumption that whenever a queue depletes to 0, it is replaced by a new
queue (behind it) drawn from the same stationary distribution. We will discuss this
further in Section 5.3.6.

5.3.2 First-Hitting Times

Another quantity of interest is the length of time that elapses before a queue with
a given length V first reaches V = 0. We call this time the first-hitting time T1(V).
Given that we assume the queue dynamics to be stochastic, it follows that T1(V)
is a random variable. In this section, we use the master equation (5.2) to derive
several interesting results about its behaviour.

Let E[T1|V] denote the mean first-hitting time from state V . We first turn our
attention to the case where V = V0. Recall that we can consider V(t) as the state of
a random walker with dynamics specified by Equation (5.1), and that the exit flux
J0 denotes the probability per unit time that the queue hits zero (and is reinjected
at V0). The quantities E[T1|V0] and J0 are then related by the equation

J0 =
1

E[T1|V0]
. (5.8)

To see why this is the case, imagine observing the system for a very long time
T . By definition of the exit flux J0, the expected number of hits during time T is
equal to J0T . If the average length of time between two successive hits is E[T1],
then the average number of hits during T is also T/E[T1]. We thus obtain a simple
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formula for the mean first-hitting time:

E[T1|V0] =
1
J0
=

V0

μ+ ν−λ. (5.9)

Intuitively, this result makes sense because μ+ ν−λ is the velocity with which the
V(t) process moves towards zero, and V0 is the initial position.

We next turn our attention to deriving the full distribution of first-hitting times
T1. More precisely, we consider the question: given that the total volume in the
queue is currently V , what is the probability Φ(τ,V) that the first-hitting time is
T1 = τ?

Let τ1 denote the time at which the queue first changes volume (up or down).
For the queue length to have remained constant between 0 and τ1 requires that
no event occurs during that time interval. Because of the Poissonian nature of
volume changes, this happens with probability e−(ν+μ+λ)τ1 . Then, between times τ1

and τ1+dτ1, the queue length will either increase with probability λdτ1 or decrease
with probability (ν+ μ)dτ1. The first-hitting time problem then restarts afresh, but
now from a volume V+1 or V−1 and first-hitting time τ−τ1. Summing over these
two different possibilities, one finds, for V ≥ 1:

Φ(τ,V) =
∫ τ

0
dτ1λe−(ν+μ+λ)τ1Φ(τ− τ1,V + 1) (5.10)

+

∫ τ

0
dτ1(μ+ ν)e−(ν+μ+λ)τ1Φ(τ− τ1,V − 1), (5.11)

with, trivially, Φ(τ,V = 0) = δ(τ).
By introducing the Laplace transform of Φ(τ,V),

Φ̂(z,V) :=
∫ ∞

0
dτΦ(τ,V)e−zτ, (5.12)

and using standard manipulations (see Appendix A.2), one can transform this
equation for Φ(τ,V) to arrive at:

Φ̂(z,V) =
λ

λ+μ+ ν+ z
Φ̂(z,V + 1)+

μ+ ν

λ+μ+ ν+ z
Φ̂(z,V − 1). (5.13)

One can check directly that Φ̂(z = 0,V) = 1 solves the above equation for z = 0.
Recalling Equation (5.12), this just means that∫ ∞

0
dτΦ(τ,V) = 1, for all V,

which implies that the probability that the queue will eventually deplete at some
time in the future is equal to one (when λ ≤ μ+ ν).
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By expanding Equation (5.12) for small z, we can also derive expressions for
the moments of the distribution of first-hitting times:

Φ̂(z,V) = 1− zE[T1|V]+
z2

2
E[T 2

1 |V]+O(z3), (z→ 0). (5.14)

Expanding Equation (5.13) to first-order in z therefore leads to:

− zE[T1|V]=−z
λ

λ+μ+ ν
E[T1|V +1]− z

μ+ ν

λ+μ+ ν
E[T1|V −1]− z

1
λ+μ+ ν

, (5.15)

which implies that:

E[T1|V] =
λ

λ+μ+ ν
E[T1|V + 1]+

μ+ ν

λ+μ+ ν
E[T1|V − 1]+

1
λ+μ+ ν

. (5.16)

This has a transparent interpretation: the average time for the queue to reach length
0 from an initial length of V is equal to the average time to make a move up or
down, plus the average time to reach 0 from V +1 times the probability of making
an upward move, plus the average time to reach 0 from V −1 times the probability
of making a downward move.

In the case where λ < μ+ ν, we can interpret the difference between (μ+ ν) and
λ as the mean drift of the queue length towards 0. Since this drift does not depend
on V , this suggests that when seeking solutions to E[T1|V], we should consider
expressions that take the form

E[T1|V] = A′V, (5.17)

where, using Equation (5.16),

A′(λ−μ− ν)+ 1 = 0. (5.18)

Substituting Equation (5.18) into Equation (5.17), we finally recover

E[T1|V] =
V

μ+ ν−λ,

which is exactly what we derived in Equation (5.9) by a different method.
An interesting point is that Equation (5.13) can be solved for any z, and that
Φ̂(z,V) = a(z)V is a solution, provided that

λa2(z)− (λ+μ+ ν+ z)a(z)+μ+ ν = 0, (5.19)

which can be rearranged to

a±(z) =
1

2λ

[
(λ+μ+ ν+ z)±

√
(λ+μ+ ν+ z)2 − 4λ(μ+ ν)

]
. (5.20)
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Note that a+(0) = (μ + ν)/λ > 1 and a−(0) = 1. Hence, the constraint Φ̂(0,V) ≡ 1
eliminates the exponentially growing contribution a+(z)V , which finally leads to a
very simple result:

ln Φ̂(z,V) = V lna−(z). (5.21)

Expanding to second order in z directly allows one to derive the variance of the
first-hitting time (see Appendix A.2):

V[T1|V] = V
μ+ ν+λ

(μ+ ν−λ)3
. (5.22)

If an explicit solution is required, Equation (5.21) can be inverted to yield
the exact hitting time distribution for any V . However, the analytical form
of this solution is messy and not particularly instructive. More interestingly,
Equation (5.21) shows that all cumulants of the hitting time distribution behave
linearly in V . This situation is identical to the well-known Central Limit
Theorem, where all cumulants of the sum of V IID random variables behave
linearly in V (see Appendix A.2).1 Therefore, Equation (5.21) can be used to
show that for large V , the distribution of first-hitting times approaches a Gaussian
distribution with mean V/(μ+ ν−λ) and variance V(μ+ ν+λ)/(μ+ ν−λ)3.

5.3.3 Long Lifetimes: The Critical Case

So far in this section, we have considered the case where λ < μ + ν. The case
λ = μ+ ν, where the flow is exactly balanced, is quite different. By inspection, one
sees that the expression for the mean first-hitting time in Equation (5.9) diverges
when λ = μ + ν. Therefore, the expected first-hitting time in this case is infinite.
However, this does not imply that the queue never empties. In fact, the queue
empties with probability 1, although this can take a very long time.

In this special case, expanding Equations (5.20) and (5.21) in the limit z→ 0
leads to the singular expansion:

lnΦ̂(z,V) = V lna−(z) ≈
z→0
−V

√
z
λ
+O(z). (5.23)

The
√

z behaviour for small z implies that for large τ, the distribution of the
hitting time Φ(τ,V) decays as (V/

√
λ)τ−3/2 (see Appendix A.2). This distribution

is very broad; in fact, it has an infinite mean, which is characteristic of unbiased
one-dimensional random walks. This behaviour can be traced back to the very long
upward excursions of the queue length, as the force driving to make it smaller is
exactly zero in the critical case. When λ ↑ (μ+ν), the τ−3/2 tail is truncated beyond
a time scale ∝ (μ+ ν−λ)−2, much larger than the average exit time E[T1|V].

1 In fact, the first-hitting time from V is equal to the first-hitting time of V − 1 from V plus the first-hitting time
from V − 1, which recursively demonstrates that T1(V) is indeed the sum of V independent random variables.
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In fact, the only way that the above (highly simplified) random walk model
can be used to represent the dynamics of long queues is when the parameters
are chosen to be close to the critical case – otherwise, order queues would never
become large – see Equation (5.6). However, as we will see in the subsequent
sections of this chapter, this fine-tuning to a critical case is not necessary when we
consider more complex models in which the aggregate cancellation rate increases
with the total volume of limit orders in the queue.

5.3.4 The Continuum Limit and the Fokker–Planck Equation

Throughout this section, we have studied a model in which the state space of V is
discrete, and where V can only change by one unit at a time. We now consider the
limit where the volume in the queue becomes large, such that V 	 1 most of the
time. In this situation, volume changes can be considered as infinitesimal. In this
continuum limit (where V is now considered as a continuous variable), the master
equation from Section 5.3.1 instead becomes a Fokker–Planck equation.

Consider again the dynamics described by Equation (5.1), and assume that
P(V, t) is sufficiently smooth to allow the following Taylor expansion:

P(V ± 1, t) ≈ P(V, t)± ∂V P(V, t)+
1
2
∂2

VV P(V, t). (5.24)

Substituting this expansion into the master equation (5.2) with J(t) = 0:

∂P(V, t)
∂t

≈ −(λ+μ+ ν)P(V, t)+λ

(
P(V, t)− ∂V P(V, t)+

1
2
∂2

VV P(V, t)

)
+ (μ+ ν)

(
P(V, t)+ ∂V P(V, t)+

1
2
∂2

VV P(V, t)

)
,

≈ −(λ−μ− ν)∂V P(V, t)+ (λ+μ+ ν)
1
2
∂2

VV P(V, t).

Introducing the drift constant F = λ− μ− ν and the diffusion constant D = (λ+
μ+ ν)/2 yields

∂P(V, t)
∂t

≈ −F∂V P(V, t)+D∂2
VV P(V, t). (5.25)

Equation (5.25) is the simplest case of a Fokker–Planck equation, called the
drift–diffusion equation. Working directly with this equation provides an
alternative (and often simpler) route to calculating some of the quantities and
distributions that we calculated for the case of strictly positive order sizes earlier in
this section. For example, let us consider the stationary distribution Pst.(V), which
we calculate in Section 5.4.1 by solving the discrete master equation. We now
consider Equation (5.25) with the left-hand side set to 0. We add an extra current
contribution J0δ(V − V0) to the right-hand side, to account for the reinjection of
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V0 when the queue depletes to 0. For F < 0, the solution such that Pst.(V = 0) = 0
(because of the absorbing condition there) and Pst.(V→∞) = 0 takes the form:

Pst.(V ≤ V0) = A(1− e−|F|V/D),

Pst.(V ≥ V0) = A(e|F|V0/D − 1)e−|F|V/D.

The discontinuity of the slope at V = V0 is fixed by the extra current contribution
J0δ(V −V0):

A|F|e−|F|V0/D − J0 = −A|F|(1− e−|F|V0/D),

which yields

A = J0/|F|.
Finally, the normalisation of Pst.(V) fixes A such as AV0 = 1, leading to J0 = |F|/V0.
The mean first-hitting time is thus given by E[T1] = V0/|F|.

5.3.5 Revisiting the Laplace Transform
We can also consider the continuum limit within the Laplace transform in
Equation (5.12), to find:

sΦ̂(z,V) = F∂VΦ̂(z,V)+D∂2
VVΦ̂(z,V). (5.26)

Looking for solutions of the form Φ̂(z,V) ∝ ea(z)V , it holds that a(z) must obey

Da2(z)+Fa(z)− z = 0,

so

a±(z) =
1

2D

[
−F ±

√
F2 + 4Dz

]
.

Note that the problem is only well defined when F < 0 (i.e. when the drift is
towards V = 0). The constraint that Φ̂(z = 0,V) = 1 for all V eliminates the positive
a+(z) solution. Hence

ln Φ̂(z,V) = a−(z)V, (5.27)

which is very similar to Equation (5.21). Note that a−(0) = 0, such that the condition
ln Φ̂(0,V) = 0 is indeed satisfied.

5.3.6 A Self-Consistent Solution
We now discuss the self-consistent case, in which reinjection occurs according to the
stationary distribution Pst.(V), such that the probability of observing a reinjection of
a given size is precisely equal to the stationary probability of observing a queue of
that size. This corresponds to the idea that when a queue empties, it is replaced by the
queue just behind, which we assume to have the same stationary distribution. This
is of course only an approximation, since the second-best queue is shielded from
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market orders, and might not be described by the same deposition and cancellation
rates as the best queue.

The Fokker–Planck equation for Pst.(V) reads

∂Pst.(V)
∂t

= −F∂V Pst.(V)+D∂2
VV Pst.(V)+ J0Pst.(V),

and by stationarity of Pst.(V) it holds that

∂Pst.(V)
∂t

= 0,

so we seek to solve

−F∂V Pst.(V)+D∂2
VV Pst.(V)+ J0Pst.(V) = 0. (5.28)

To find the solution that vanishes at V = 0, we proceed exactly as in the previous
section, but replacing Φ̂(z,V) in Equation (5.26) with Pst., replacing z with −J0, and
replacing F with −F. Since now both solutions a+(−J0) and a−(−J0) are negative for
F < 0, we have:

Pst.(V) = A(−ea+(−J0)V + ea−(−J0)V ).

The exit flux at V = 0 is given by J0 = −D∂V Pst., leading to:

J0 = DA(a+(−J0)− a−(−J0)) = A
√

F2 − 4DJ0.

The normalisation condition is

1 = −A

(
1

a+(−J0)
− 1

a−(−J0)

)
,

which turns out to be satisfied for any A. We can thus arbitrarily choose A, which
amounts to choosing an arbitrary exit flux J0 ≤ F2/4D. The corresponding stationary
solution reads:

Pst.(V) =
2J0√

F2 − 4DJ0

e−|F|V/2D sinh

⎛⎜⎜⎜⎜⎜⎝ √
F2 − 4DJ0 V

2D

⎞⎟⎟⎟⎟⎟⎠ . (5.29)

Interestingly, this model can self-consistently produce both long queues and short
queues in the limit J0→ 0.

5.4 A More Complex Model: Linear Cancellation Rate

Throughout Section 5.3, we assumed that the total rate of cancellations was
constant. Although this framework led to convenient mathematics, it is not a
realistic representation of cancellations in real markets. In particular, the model
requires fine-tuning of its parameters to produce long queues, such as those often
observed in empirical data for large-tick assets.

How might we change the model to address this problem? One way is to assume
that each individual order in the queue has cancellation rate ν independent of the
queue length V , such that the total cancellation rate grows linearly as νV (instead
of being constant, as in the previous model). This makes intuitive sense: the more
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orders in the queue, the larger the probability that one of them gets cancelled.
Specifically, consider the model{

V→ V + 1 with rate λdt (deposition),
V→ V − 1 with rate (μ+Vν)dt (execution + cancellation).

(5.30)

To lighten exposition in the subsequent sections, we introduce the notation
W±(V) as the transition rate from V → V ± 1. For the model described by
Equation (5.30),

W+(V) = λ, (5.31)

W−(V) = μ+Vν. (5.32)

Observe that the only difference between this model and the model specified by
Equation (5.1) is the inclusion of the Vν term, instead of the ν term, to account for
cancellations.

Importantly, the inclusion of this Vν term ensures that queue sizes self-stabilise
for any choices of λ,μ,ν > 0. In other words, there exists some value

V∗ =
λ−μ
ν

(5.33)

of the queue length such that the total out-flow rate of orders W−(V∗) matches the
in-flow rate of orders W+(V∗). If V <V∗, then W+(V)>W−(V) and the queue length
tends to grow on average; if V > V∗, then W+(V) < W−(V) and the queue length
tends to shrink on average. Those self-regulating mechanisms lead to queues that
fluctuate around their equilibrium size V∗. Given a large value of λ, it is therefore
possible to observe long queues without requiring a fine-tuned relation between λ,
μ, and ν to ensure stability (as was the case in Section 5.3).

5.4.1 Quasi-Equilibrium

The master equation corresponding to the dynamics specified by Equation (5.30)
is now given by

∂P(V, t)
∂t

= −(λ+μ+ νV)P(V, t)+λP(V − 1, t)+ (μ+ ν(V + 1))P(V + 1, t); V > 1.

(5.34)
For the moment, we fix the boundary condition such that whenever V = 0, the
particle is immediately reinjected at state V = 1. Therefore, the exit flux is 0, there
is no particle at V = 0 and the missing equation for V = 1 reads

∂P(1, t)
∂t

= −λP(1, t)+ (μ+ 2ν)P(2, t).
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Figure 5.1. Pst.(V) from Equation (5.35) for different values of λ/ν and μ/ν.

In this case, one can readily check that for V ≥ 2, the ansatz

Pst.(V) = A

(
λ
ν

)V

Γ
[
V + 1+ μ

ν

] (5.35)

is an exact stationary state, in the sense that it causes the right-hand side of
Equation (5.34) to equal 0 for all V > 1. The value of Pst.(1) is simply given
by (μ + 2ν)Pst.(2) and the constant A is fixed by the normalisation condition∑∞

V=1 Pst.(V) = 1.
To make sense of this solution when depletion and reinjection are present,

let us assume that we are in a situation where queues are typically very large,
corresponding to the limit λ	 μ,ν, such that V∗ 	 1. Figure 5.1 shows the shape of
Pst.(V) for this case. As the figure illustrates, the stationary distribution is peaked,
with a very low probability of small queues.

More precisely, consider the relative probability of observing the queue in state
V = 1 rather than in state V = V∗. This is given by

Pst.(1)
Pst.(V∗)

∝ V∗
1
2+

μ
ν e−V∗ . (5.36)

For increasingly large choices of V∗, this ratio becomes very small, very quickly.
This suggests that even if we apply a boundary condition with non-zero exit flux,
the contribution of this exit flux (which is proportional to Pst.(V = 1)) to the
overall dynamics will be very small, so the stationary state will still be given by
Equation (5.35) up to exponentially small corrections ∝ e−V∗ .

As we discuss in Section 5.4.5, the order of magnitude of the time required to
reach the stationary distribution is ν−1. Equation (5.36) suggests that compared
to ν−1, the first-hitting time T1(V) is very large – indeed, it is exponentially
larger in V∗, as we will confirm in Equation (5.42) below. Therefore, even in the
presence of a non-zero exit flux, the system reaches a quasi-equilibrium (where
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the distribution is approximately given by Pst.(V)) much faster than the time needed
for the queue to empty.

5.4.2 First-Hitting Times
We now study the first-hitting time for the model with a constant cancellation rate
per order. Using the notation W+(V) and W−(V) from Equations (5.31) and (5.32),
we can implement the Laplace transform from Equation (5.12) to arrive at

Φ̂(z,V) =
W+(V)

W+(V)+W−(V)+ z
Φ̂(z,V + 1)+

W−(V)
W+(V)+W−(V)+ z

Φ̂(z,V − 1). (5.37)

As we did for the constant-cancellation model in Section 5.3.2, we can expand
Equation (5.37) to first order in z to derive an expression for the mean first-hitting
time E[T1|V]:

(W+(V)+W−(V))E[T1|V]−W+(V)E[T1|V + 1]−W−(V)E[T1|V − 1] = 1. (5.38)

Setting
U(V) := ν[E[T1|V + 1]−E[T1|V]]

yields the recursion

W+(V)U(V)−W−(V)U(V − 1) = −ν. (5.39)

Note that from the definition of U(V), the mean first-hitting time of state V when
starting from state V + 1 is U(V)/ν.

The recursion in Equation (5.39) can be solved by using the generating function

Ũ(y) =
∞∑

V=0

yV

V!
U(V), (5.40)

which obeys a simple ordinary linear differential equation.2 The problem then resides
in finding appropriate boundary conditions to impose on the solution. When y→ 0,
the solution should be 0, but when y→∞, the solution should not grow exponentially
in y.

In general, finding a solution that satisfies these boundary conditions is difficult.
However, when μ/ν� 1, the solution is simple. As can be verified by inserting it into
Equation (5.39), the solution reads:3

U(V) =
V!

V∗V+1

∞∑
K=V+1

V∗K

K!
. (5.41)

Equation (5.41) contains all the information we need to infer how the mean
first-hitting time depends on the volume of the queue. When V∗ 	 1 (i.e. when the
mean queue length is large), the function U(V) has two regimes:

U(V < V∗) ≈ V!
V∗V+1

eV∗ ,

U(V > V∗) ≈ 1
V
.

2 Another possible method for solving Equation (5.39) is to use continued fractions (see, e.g., Cont, R.,
Stoikov, S., & Talreja, R. (2010). A stochastic model for order book dynamics. Operations Research, 58(3),
549–563). For a related calculation, see also Godrèche, C., Bouchaud, J. P., & Mézard, M. (1995). Entropy
barriers and slow relaxation in some random walk models. Journal of Physics A, 28, L603–L611.

3 For arbitrary μ/ν, the solution is obtained by replacing V! by Γ[V + 1 + μ/ν] and K! by Γ[K + 1 + μ/ν]. This
does not change the qualitative behaviour of E[T1 |V] when V∗ 	 1.
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Figure 5.2. The average first-hitting time E[T1|V] versus V/V∗ for V∗ = 5. A
quasi-plateau value ≈ eV∗/νV∗ is reached quickly as the initial volume V increases.

Observing that

νE[T1|V] =U(0)+U(1)+ · · ·+U(V − 1)

allows us to infer the behaviour of the mean first-hitting time as a function of V .
As Figure 5.2 illustrates, E[T1|V] grows rapidly towards a quasi-plateau that extends
over a very wide region around V∗, before finally growing as lnV when V → ∞.
We provide an intuitive explanation for this logarithmic behaviour in Section 5.4.4,
where we discuss the continuous limit of the model.

The plateau value defines the mean first-hitting time when starting from a queue
size V0 ≈ V∗, and is given by

E[T1|V∗] ≈ eV∗

νV∗
×
[
1+

1!
V∗
+

2!
(V∗)2

+ · · ·
]
. (5.42)

The mean first-hitting time thus grows exponentially in V∗, as anticipated by the
arguments of Section 5.4.1.

5.4.3 Poissonian Queue Depletions
We now show that in the limit when E[T1|V∗] is large, the distribution of first-hitting
times is exponential, such that the counting process of queue depletions is Poissonian.
Consider again Equation (5.37) for the Laplace transform of the distribution of
first-hitting times. Expanding Φ̂(z,V) in powers of z generates the moments of this
distribution (see Appendix A.2):

Φ̂(z,V) = 1+
∞∑

n=1

(−z)n

n!
E[T n

1 |V]. (5.43)

Identifying terms of order zn in Equation (5.37) leads to the following exact recursion
equation:

(W+(V)+W−(V))E[T n
1 |V]−W+(V)E[T n

1 |V + 1]−W−(V)E[T n
1 |V − 1] =

n!
n∑

k=1

(W+(V)+W−(V))−k

(n− k)!

[
W+(V)E[T n−k

1 |V + 1]+W−(V)E[T n−k
1 |V − 1]

]
.

(5.44)

When n= 1, we recover Equation (5.38). When n= 2, and for V in the wide plateau
region (where the average hitting time is nearly constant) defined in Section 5.4.2,
the right-hand side of Equation (5.44) contains two types of terms:
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• k = 1: terms of order E[T1|V∗], which grow exponentially in V∗;
• k = 2: terms of order E[T 0

1 |V], which are of order unity.

Neglecting the latter contribution, we find

(W+(V)+W−(V))E[T 2
1 |V]−W+(V)E[T 2

1 |V + 1]−W−(V)E[T 2
1 |V − 1] ≈ 2E[T1|V∗].

Therefore the equation for E[T 2
1 |V] is exactly the same as for E[T1|V], except that the

right-hand side is now equal to 2E[T1|V∗] instead of 1. Since the equation is linear,
we can conclude that

E[T 2
1 |V] ≈ 2E[T1|V∗]E[T1|V],

which again does not depend heavily on V in a wide region around V∗. We can
then extend this argument by recursion to arbitrary n. Up to the leading exponential
contribution, the dominant term is always k = 1, hence

E[T n
1 |V] ≈ n!E[T1|V]n,

which are the moments of an exponential distribution with mean E[T1|V]. Conse-
quently, the distribution of hitting times is

Φ(τ,V) ≈ 1
E[T1|V]

exp−
[

τ

E[T1|V]

]
.

Consistently with the physical picture that we develop in Section 5.4.5, this result
illustrates that the sequences of events that cause the queue to empty occur so rarely
that we can regard them as independent, leading to a Poisson depletion process. This
rather remarkable property will enable us to discuss the race between two queues in
a very simple manner in Chapter 7.

5.4.4 The Continuum Limit: The CIR Process

We now consider the continuum limit for the model with a constant cancellation
rate per order. Similarly to our approach in Section 5.3.4, we assume that P(V, t) is
sufficiently smooth to allow the same Taylor expansion as in Equation (5.24). The
Fokker–Planck equation describing the linear problem is then:

∂P(V, t)
∂t

≈ −∂V [F(V)P(V, t)]+ ∂2
VV [D(V)P(V, t)] , (5.45)

with drift
F(V) =W+(V)−W−(V) = λ−μ− νV

and diffusion

D(V) =
W+(V)+W−(V)

2
=
λ+μ+ νV

2
.

The equilibrium size,
V∗ = (λ−μ)/ν, (5.46)

corresponds to the point where the drift F(V) vanishes.
This model is known as a modified CIR process.4 Given that we are considering

the specific context of a queue, we will call the model the Q-CIR process (where

4 The model is also sometimes called a Heston process or a mean-reverting Bessel process. The associated
stochastic PDE, defining the dynamics of V , is dV = (λ−μ− νV)dt+

√
λ+μ+ νVdWt , where Wt is a Brownian

motion. The standard CIR process is obtained upon defining X := λ+μ+ νV .
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Q stands for queuing). Note that the model holds quite generally; for example, it is
not necessary to assume that all orders have the same size to obtain such a Q-CIR
process in the continuum limit.

If we impose an absorbing boundary condition at V = 0, then, in the absence
of reinjection, Equation (5.45) does not have any non-trivial stationary solutions,
because for all V > 0, it follows that limt→∞P(V, t) = 0.

If we instead impose a reflecting boundary condition at V = 0, such that queues
are not allowed to empty and instead bounce back to a strictly positive value, then
the exit flux at V = 0 is zero, so the stationary solution of Equation (5.45) obeys

−F(V)Pst.(V)+ ∂V [D(V)Pst.(V)] = 0.

Solving this expression, we arrive at

Pst.(V) = A
(
λ+μ

ν
+V

) 4λ
ν −1

e−2V ,

where A is fixed by the normalisation of Pst.(V).
In the case where the deposition rate λ becomes very large, such that μ� λ and

V∗ ≈ λ/ν	 1, the stationary state can be written as

Pst.(V) ≈ A (V∗ +V)4V∗ e−2V ,

which behaves very similarly to its discrete counterpart in Equation (5.35) (see
also Figure 5.1). In this case, Pst.(V) first grows exponentially (as e2V for V� V∗),
before reaching a maximum at V = V∗ and decaying back to zero as V4V∗e−2V for
V 	 V∗. Similarly to in Equation (5.36), we can calculate the following ratio of
probabilities

Pst.(0)
Pst.(V∗)

≈ e−(4 ln2−2)V∗ .

As in the discrete model, this ratio behaves like eV∗ , so for increasingly large
choices of V∗, this ratio becomes very small, very quickly. However, note that
the continuum limit predicts a coefficient of 4 ln2 − 2 ≈ 0.76 in the exponential,
whereas the discrete case in Equation (5.36) predicts a coefficient of 1 in the
exponential. This highlights that adopting the assumptions required to study the
model in the continuum limit can induce subtle quantitative differences that may
affect the evaluation of rare events.

Despite these quantitative differences, the continuum limit allows us to gain
useful intuition about the dynamics of the process. The reason for the exponentially
small probability of observing small queues is quite simple: since the drift F(V) is
strongly positive when V � V∗, it tends to drive the queue back to its equilibrium
size V∗. In the same way, when V 	 V∗, the drift F(V) is negative, and tends to



96 Single-Queue Dynamics: Simple Models

drive the queue back to V∗. Correspondingly, it takes a very long time to overcome
this drift and reach V = 0.

In the limit λ	 μ,ν, one can in fact show that

E[T1|V] ≈ ν−1

√
π

2V∗
e(4 ln2−2)V∗ , (5.47)

which again shows very little dependence on V in a wide region around V∗.
Similarly to our findings in Section 5.4.1, we recover the result that in the

presence of a non-zero exit flux, the system reaches a quasi-equilibrium (where the
distribution is approximately given by Pst.(V)) exponentially faster than the time
needed for the queue to empty. In fact, this result still holds when re-initialising
the queue size to almost any value V0 after the queue depletes to V = 0, because the
queue size re-equilibrates to Pst.(V) so quickly (in a time whose magnitude is of the
order ν−1). This result is important because it illustrates that it is not necessary to
specify the exact reinjection mechanism to obtain a precise prediction for the shape
of the stationary distribution Pst.(V). In practice, the distribution of initial values V0

should be the size distribution of either the second-best queue, or of an incipient
new queue (depending on the cases; see Section 6.1 below). But in both cases,
Pst.(V) will quickly settle in, with very little dependence on the re-initialisation
mechanism.

5.4.5 Effective Potential Barriers

How can one estimate the mean first-hitting time using the Fokker–Planck
formalism? In the continuum limit, the analogues of Equations (5.37) and (5.38)
read

zΦ̂(z,V) = F(V)∂VΦ̂(z,V)+D(V)∂2
VVΦ̂(z,V) (5.48)

and
F(V)∂VE[T1|V]+D(V)∂2

VVE[T1|V] = −1, (5.49)

respectively, with boundary conditions

E[T1|V = 0] = 0; lim
V→∞∂VE[T1|V] = 0.

This second-order, inhomogeneous ODE can be solved by standard techniques, to
produce the result shown in Equation (5.47).

As in the discrete case, the mean first-hitting time is only weakly dependent
on the starting size V0 (provided V0 is neither too large or too small) and grows
exponentially in the equilibrium size V∗. To understand these (perhaps surprising)
results, we provide the following physical interpretation of the system. Consider
a Brownian particle (with a V-dependent diffusion constant) in a parabolic-like
potential well that reaches its minimum at V∗ with curvatureW′′(V∗) = 1/V∗ (see
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V VV 
*

W(V * )

W(V )

V

W(V )

Figure 5.3. A potential wellW(V), within which the effective “particle” (which
represents the size of the queue) oscillates randomly before overcoming the
barrier.

Figure 5.3). Consider the particle’s effective potential energyW(V), defined such
that F(V) := −D(V)W′, and withW(0) = 0. In the present linear case, and again
in the limit λ	 μ, it follows that

W(V) = 2V − 4V∗ ln
(
1+

V
V∗

)
. (5.50)

Intuitively, the particle’s typical trajectories are such that starting from almost
any V0, the particle first rolls down the potential well, to reach the minimum after
a time whose magnitude is of order ν−1. Then, driven by the Brownian noise, the
particle fluctuates around this minimum. It takes an extremely rare fluctuation to
allow the particle to climb all the way uphill (from V∗ to V = 0) and find the exit.
As we saw in Section 5.4.3, these fluctuations in fact lead to a Poissonian exit
process. The mean escape time of the particle is given by

E[T1|V] ≈ 1
D(V∗)|W′(0)|

√
2π

W′′(V∗)
e−W(V∗).

In the Q-CIR case (see Section 5.4.4), whereW is given by Equation (5.50), one
can check that this expression recovers exactly Equation (5.47).

Finally, our physical picture can also shed light on the logarithmic behaviour of
E[T1|V] for V →∞. In this case, the Brownian particle must first scurry from this
large V down to V∗, from which it then starts attempting to escape the potential
well. The initial roll-down phase is governed by a quasi-deterministic evolution

dV
dt

∣∣∣∣∣
V→∞

≈ F(V) ≈ −νV.

In this regime, we can neglect the Brownian noise contribution, because it is so
small compared to the drift. Integrating this equation of motion reveals why it
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takes a time whose magnitude is of order lnV to reach the bottom of the potential
well, hence explaining the logarithmic growth of E[T1|V] for large V .

5.5 Conclusion

In this chapter, we have considered many useful ideas about single-queue systems.
Many of these results hold more generally, independently of the details of the
model used to describe the dynamics of long queues. To summarise the most
important intuitions that we have garnered:

• When the total cancellation rate grows with the queue size V , queues
self-stabilise around a well-defined equilibrium size V∗.

• When V∗ is sufficiently large (i.e. when the order submission process is more
intense than either cancellations or market order execution), the queue dynamics
can be neatly decomposed into a fast part, where a quasi-equilibrium state
quickly sets in, and a slow part, where a Poisson process leads to an emptying of
the queue.

• Although we have only considered the case where the cancellation rate grows
linearly with the queue size, the resulting separation of time scales is in fact
generic and holds whenever the total cancellation rate grows with the queue
size, say as Vζ with ζ > 0.

• The case ζ = 0 corresponds to the first model that we considered in this chapter.
It is special in the sense that the only way to obtain long queues is to fine-tune
the parameters of the model such that it sits at its “critical point”, beyond which
no stationary solution exists.

Empirical data suggests that the total cancellation rate grows sublinearly with
the queue size (i.e. 0 < ζ < 1; see Section 6.4). A simple argument to understand
this is time priority, which is extremely valuable in large-tick markets, because
being at the front of a long queue increases the probability of execution, while
minimising adverse selection (see Section 21.4 for a detailed discussion of this
point). This means that cancelling an order at the front of a long queue does not
make much sense economically. The only orders likely to be cancelled are those at
the back of the queue. Therefore, we expect that only a small fraction of the orders
in a given queue have an appreciable probability of being cancelled.

In the next chapter, we will consider more general specifications of single-queue
models, and discuss how to calibrate such models directly to empirical data,
without making many assumptions on the microscopic order flow. The above
conclusions will hold for a large family of such models provided the effective
potential barrier introduced in Section 5.4.5 is sufficiently high.
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Take-Home Messages

(i) Stochastic models can be used to model markets with a
“zero-intelligence” framework. These models seek to make predic-
tions based on the statistical properties of order flow, rather than trying
to understand what drives it in the first place.

(ii) The volume available at each level of the price grid can be modelled
as a queuing system. These queues grow due to the arrival of new limit
orders and shrink due to the cancellation of existing limit orders. At
the best quotes, arriving market orders also cause the queues to shrink.

(iii) When all are described by mutually independent, homogeneous
Poisson processes whose rate parameters are independent of the queue
size, many quantities of interest can be derived analytically. Only
when the total growth rate is nearly equal to the total shrink rate
does the queue exhibit large excursions, as observed empirically. In
this case, the distribution of times between two queue depletions is
extremely broad.

(iv) When assuming a constant cancellation rate per limit order, the queue
stabilises around a stationary length. If this stationary length is large,
the excursions around it can be described by a CIR process, and
depletions occur as a Poisson process.

(v) In the limit of large volumes and/or small increments, the queue
dynamics can be described in a continuous setting using a
Fokker–Planck equation, which can be solved analytically using
standard PDE tools.
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6

Single-Queue Dynamics for Large-Tick Stocks

The calculus of probability can doubtless never be applied to market activity, and
the dynamics of the Exchange will never be an exact science. But it is possible to
study mathematically the state of the market at a given instant.

(Louis Bachelier)

In Chapter 5, we studied two simple models of a single order queue. Despite
the apparent simplicity of our modelling assumptions, we saw that deriving
expressions about the queue’s behaviour required some relatively sophisticated
machinery. In this chapter, we take the next step towards developing a stochastic
model of an LOB by extending the models of the previous chapter towards
more realistic situations. We focus on large-tick stocks, for which two major
simplifications of the resulting queue dynamics occur.1

First, the bid–ask spread s(t) is constrained heavily by the tick size ϑ, such
that s(t) = ϑ for the vast majority of the time. Therefore, traders are unable to
submit limit orders inside the spread, so price changes only occur when either the
bid-queue or the ask-queue depletes to V = 0. Second, considerable volumes of
limit orders typically accumulate at the bid-price and at the ask-price. In fact, Vb

and Va alone can correspond to a non-negligible fraction of the daily traded volume
(see Table 4.1). For small-tick stocks, by contrast, Vb and Va typically correspond
to about 10−2 of the daily traded volume, it is common for limit orders to arrive
inside the spread, and some arriving market orders cause price changes of several
or even several tens of ticks. These empirical facts make modelling of LOBs much
more difficult for small-tick stocks.

Because of the large volumes at the best quotes for large-tick stocks, and because
price changes correspond to the times when either the bid-queue or the ask-queue
deplete to 0, such events occur relatively infrequently, so that the typical daily

This chapter is not essential to the main story of the book.
1 Recall from Chapter 4 that a large-tick stock is a stock whose tick size ϑ is a relatively large fraction of its price

(typically tens of basis points or even some percentage points).
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price change for a large-tick stock is usually between a few ticks and a few tens of
ticks. For example, consider a stock with relative tick size ϑr ≈ 0.002 and a daily
volatility of 2%. The number N of (random) daily mid-price changes satisfies

0.02 ≈ 0.002
√

N,

so N ≈ 100. If this stock’s trading day lasts eight hours, then on average the
mid-price only changes value (usually by a single tick) about once every five
minutes, during which a very large number of events take place at the best quotes.

Given that their depletion constitutes a relatively rare event, the dynamics of the
bid- and ask-queues for a large-tick stock becomes an interesting modelling topic
in its own right. As we will see in Section 6.2, we only require a few, relatively
small extensions of our single-queue model from Chapter 5 to produce a useful
model for large-tick stocks.

6.1 Price-Changing Events

We start our exploration of more realistic models precisely where we left off in
Chapter 5: with a Fokker–Planck description of a single queue, in the continuum
limit. As we will see in this chapter, this description is much more general than
the specific cases that we have considered previously. The power of this approach
is well known in many different disciplines, including queueing theory, where it is
called the heavy traffic limit (see Queue Models for LOB Dynamics in Section 5.6)
and statistical physics.

In the present context, the core of this approach is as follows. Provided that
the change in queue size is the result of many small events that are weakly
correlated in time, then the long-time dynamics of the queue are given by the
general Fokker–Planck equation

∂P(V, t)
∂t

= −∂V [F(V)P(V, t)]+ ∂2
VV [D(V)P(V, t)] , (6.1)

where F(V) is the drift and D(V) is the diffusion. In the Q-CIR model of
Section 5.4.4, we assumed that F(V) and D(V) depended linearly on V , but in
general this dependence can take any linear or non-linear form. In this chapter, we
derive several results within this framework, then use empirical data to calibrate
the drift and diffusion terms, and compare the corresponding model predictions to
real queue dynamics.

Equation (6.1) models the stochastic evolution of a single queue. Assume now
that this queue is either the best bid- or ask-queue in the LOB for a large-tick
stock. In addition to the changes in queue volume, the dynamics of an LOB are
also influenced by events that change the price of the best bid or ask. Therefore, to
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extend our single-queue analysis from Chapter 5 into the context of an LOB, we
must also supplement our approach to account for these price-changing events.

Suppose, for concreteness, that we focus on the bid-queue, such that V(t)=Vb(t)
denotes the volume at the best bid at time t. Because we study large-tick stocks,
throughout this chapter we assume that the spread is equal to its minimum size of
one tick. Therefore, no limit orders can arrive inside the spread, so price changes
can only occur when a queue depletes to V = 0. Whenever a queue depletes in
this way, we assume that some new volume must arrive in the gap immediately
(otherwise, the spread would be greater than one tick). This new volume can be
either a buy limit order, in which case the bid- and ask-prices both remain the
same as they were before the depletion, or a sell limit order, in which case both
the bid- and ask-prices decrease by one tick from the previous values before the
depletion.

More formally, we assume that:

(i) If the bid-queue volume reaches V = 0, then one of the following two
possibilities must occur:
• With some probability φ0, a new buy limit order arrives, such that the

bid-queue replenishes and the bid- and ask-prices do not change. The
size δV > 0 of the new buy limit order is distributed according to some
distribution �(δV |V = 0).

• With probability 1 − φ0, a new sell limit order arrives (with a volume
distribution �(δV |V = 0)) and the bid- and ask-prices both decrease by
one tick. The new bid-queue is then the queue that was previously the
second-best bid-queue, whose volume we assume is distributed according
to some distribution P2-best(V).

(ii) Similarly, if the ask-queue volume reaches V = 0, then one of the following
two possibilities must occur:
• With some probability φ0, a new sell limit order arrives, such that the

ask-queue replenishes and the bid- and ask-prices do not change. The
size δV > 0 of the new sell limit order is distributed according to some
distribution �(δV |V = 0).

• With probability 1 − φ0, a new buy limit order arrives (with a volume
distribution �(δV |V = 0)) and the bid- and ask-prices both increase by
one tick. The new ask-queue is then the queue that was previously the
second-best ask-queue, whose volume we assume is distributed according
to some distribution P2-best(V).

How can we implement these modelling assumptions into our Fokker–Planck
framework? In Chapter 5, we introduced the concept of exit flux J0(t) to account
for queue depletions. In that chapter, we did not consider the corresponding price
changes that occur after a bid- or ask-queue depletion, but in this chapter we seek
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to address this effect directly. Therefore, we extend the concept of a single exit
flux J0(t) to also encompass possible asymmetries in the bid- and ask-queues.
Specifically, we let Jb(t) denote the probability per unit time that the bid-queue
empties and Ja(t) denote the probability per unit time that the ask-queue empties.
The mechanisms above then add some reinjection terms on the right-hand side of
Equation (6.1) to govern the distribution of volume at the bid:

J(V, t) = Jb(t) (φ0�(V |0)+ (1−φ0)P2-best(V))+ Ja(t)(1−φ0) (�(V |0)−P(V, t)) .
(6.2)

The first two terms in Equation (6.2) correspond to the bid-queue depleting to 0,
and the last two terms correspond to the ask-queue depleting to 0. Finally, the
absorbing condition fixes P(0, t) = 0, and the probability of the bid-queue hitting
zero is given by:

Jb(t) = ∂V [D(V)P(V, t)]
∣∣∣
V=0
.

By symmetry of the system, a similar result holds for Ja. One can directly check
that ∂t

∫
dVP(V, t) = 0, which shows that we have correctly accounted for all

outgoing and incoming order flow. This fixes the complete description of the queue
dynamics, which allows us to derive several results, for example concerning the
stationary distribution of the bid- or the ask-queue.

Throughout this chapter, we restrict our attention to the symmetric, stationary
case where Ja(t) = Jb(t) = J0. Using this symmetry, we arrive at

∂V [F(V)Pst.(V)]− ∂2
VV [D(V)Pst.(V)] = J0

[
�(V |0)+ (1−φ0) (P2-best(V)−Pst.(V))

]
,

(6.3)
where the exit flux J0 must satisfy

J0 = ∂V [D(V)Pst.(V)]
∣∣∣
V=0
. (6.4)

6.2 The Fokker–Planck Equation

Throughout this chapter, the Fokker–Planck equation (6.3) is our central focus.
Given its importance, we first take a moment to consider where it comes from and
why it holds.

Assume that there exists some time τc ≥ 0 such that on time scales beyond τc,
order flow can be assumed to be uncorrelated. Let �(δV |V) denote the probability
that the change in queue size in the next time interval τc is δV , given that the
current queue length is V . Values δV > 0 correspond to limit order arrivals, and
values δV < 0 correspond to limit order cancellations and market order arrivals.
We assume that all of these events occur with a probability that depends on the
queue volume at time t. The general master equation for the size distribution then
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reads
P(V, t+ τc) =

∑
δV

P(V − δV, t)�(δV |V − δV). (6.5)

Assume for now that there is no change of the bid- or ask-prices between t and
t + τc. Assume further that within a time interval of length τc, the typical change
of queue size is relatively small, such that δV � V . In this framework, one can
expand the master equation (6.5) in powers of δV . The general expansion is called
the Kramers–Moyal expansion, which when truncated to second order reads

P(V, t+ τc) ≈
∑
δV

[(
P(V, t)− δV∂V P(V, t)+

1
2

(δV)2∂2
VV P(V, t)

)

×
(
�(δV |V)− δV∂V�(δV |V)+

1
2

(δV)2∂2
VV�(δV |V)

)]
.

(6.6)

Regrouping the terms by order:

P(V, t+ τc) ≈ P(V, t)− ∂V

⎡⎢⎢⎢⎢⎢⎣∑
δV

δV�(δV |V)P(V, t)

⎤⎥⎥⎥⎥⎥⎦+ 1
2
∂2

VV

⎡⎢⎢⎢⎢⎢⎣∑
δV

(δV)2�(δV |V)P(V, t)

⎤⎥⎥⎥⎥⎥⎦ .
(6.7)

Finally, substituting the approximation P(V, t + τc) ≈ P(V, t) + τc∂tP(V, t) into
Equation (6.7) produces the Fokker–Planck equation (6.1), where

F(V) =
1
τc

∑
δV

δV�(δV |V); D(V) =
1

2τc

∑
δV

(δV)2�(δV |V) (6.8)

are the first two moments of the conditional distribution of size changes, �(δV |V).
The special Q-CIR model in Section 5.4.4 corresponds to the case

τc = dt,

�(δV = +1|V) = λdt,

�(δV = −1|V) = (μ+ νV)dt,

�(δV = 0|V) = 1− (λ+μ+ νV)dt,

from which it again follows that

F(V) = λ−μ− νV,
D(V) =

λ+μ+ νV
2

.

The Fokker–Planck formalism allows for a much more general specification. In
particular, one can remove the assumption that all events are of unit volume, and
one can accommodate any dependence of the market order arrival and limit order
arrival/cancellation rates on the volume V .
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The general conditions under which the Fokker–Planck approximation is valid
are discussed in many books.2 Intuitively, P(V, t) must vary slowly, both in V (on
the scale of typical values of δV) and in time (on the correlation time scale τc). It
is important to check on a case-by-case basis that these conditions hold.

6.2.1 The Boltzmann–Gibbs Measure

Because Equation (6.3) is a linear second-order ODE, one can in principle write
down its explicit solution in full generality. However, as we saw in Chapter 5, this
solution can be quite complicated, and is therefore not very useful for developing
intuition about the system. A better approach is to follow a similar path to that in
Section 5.4.5, and to look for cases where the effective potential

W(V) = −
∫ V

0
dV ′

F(V ′)
D(V ′)

(6.9)

has a minimum at V = V∗ sufficiently far away from V = 0 and sufficiently deep to
keep the queue size in the vicinity of V∗ for a substantial amount of time.

Analysis of this system is further complicated by the fact that the reinjection
term in Equation (6.3) is non-zero. This makes finding general solutions
particularly difficult. However, there are two situations in which we can avoid
this difficulty. The first is whereW(V∗) is large, so J0 is very small (recall that J0

decays exponentially inW(V∗)). In this case, we can simply approximate the rein-
jection term in Equation (6.3) as 0. The second is where the best and second-best
queues have similar stationary profiles (such that P2-best(V)≈Pst.(V)) and where the
size of refilled queues is equal to a small elementary volume υ0 (such that �(V |0)≈
δ(V − υ0)). In these cases, the equation for the stationary distribution when V > 0
takes the simpler form

F(V)Pst.(V)− ∂V [D(V)Pst.(V)] = 0. (6.10)

As can be verified by inspection, the expression

Pst.(V) =
A

D(V)
e−W(V) (6.11)

is an explicit solution for Equation (6.10). The value of A is fixed by the normali-
sation of Pst.(V). Equation (6.11) is called the Boltzmann–Gibbs measure.

By comparing Pst.(0) to Pst.(V∗), we can again guess that the exit flux J0 is
indeed of the order of eW(V∗), because J0 is itself proportional to Pst.(0). Therefore,
J0 is very small as soon as the potential depth |W(V∗)| is larger than about 5.
This corresponds to the regime of large, long-lived queues. In this regime, the
equilibrium in the effective potentialW(V) is reached much faster than the time
needed for the queue to empty.

2 See for example: Gardiner, C. W. (1985). Stochastic methods. Springer, Berlin-Heidelberg and Section 6.6.
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The equilibration time (i.e. the time required to reach the stationary state) can
be approximated by considering the first-order expansion of F(V) in the vicinity
of V∗,

F(V ≈ V∗) ≈ 0+ κ(V∗ −V)+O((V∗ −V)2),

with κ > 0. Locally, the process is thus an Ornstein–Uhlenbeck process3 with
relaxation time κ−1. In the Q-CIR model of Chapter 5, κ is simply equal to ν.

In the regime J0κ
−1 � 1 (i.e. where the relaxation is so fast that the exit

flux can be neglected), the stationary distribution Pst.(V) is nearly independent
of the reinjection mechanism, as we found in Chapter 5. In particular, deriving
Pst.(V) does not require knowledge of either P2-best(V) or �(V |0). This remarkable
property, which we discussed qualitatively in Section 5.4.4, will enable us to
test empirically the relevance of the Fokker–Planck framework for describing the
dynamics of bid–ask-queues. We present these empirical results in Section 6.4.

6.2.2 First-Hitting Times

Recall from Section 5.4.5 that the mean first-hitting time E[T1(V)] obeys Equation (5.49).
As can be verified by inspection, the general expression

E[T1(V)] =
∫ V

0
dV ′

∫ ∞

V′
dV ′′

1
D(V ′′)

eW(V′)−W(V′′) (6.12)

is a solution for Equation (5.49).
In the limit |W(V∗)| 	 1, one can carry out an approximate Laplace estimation

of this integral to conclude that for a large region of initial conditions, the mean
first-hitting time is to a very good approximation independent of the starting point V ,
and is given by:

E[T1(V)] ≈ 1
D(V∗)|W′(0)|

√
2π

W′′(V∗)
e|W(V∗)|.

Therefore, E[T1(V)] grows exponentially in the barrier height. Recalling that

J0 ≈ 1
E[T1(V∗)]

,

we verify that J0 decays exponentially in W(V∗) and can therefore indeed be
neglected in Equation (6.3).

Note also that using the quasi-independence of E[T1(V)] on V (see Section 5.4.3)
and following the calculation presented for the discrete case in Section 5.4.3, one can
establish that the hitting process is also Poissonian for the general Fokker–Planck
equation (6.3) in the limit of large barrier heights.

6.3 Sweeping Market Orders

As we discussed in Section 6.2, the Fokker–Planck approach requires individual
changes in V to be small. For large-tick assets, this is indeed the case for a large

3 An Ornstein–Uhlenbeck process is described by a linear stochastic differential equation: dV = −κ(V −V∗)dt+
dWt , where Wt is a Brownian motion. See, e.g., Gardiner (1985).
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fraction of events. Sometimes, however, very large market orders consume all
the remaining volume in the best bid- or ask-queue. Due to their large size, such
market orders fall outside the scope of the standard Fokker–Planck formalism for
computing the first-hitting time. As we illustrate in Section 6.4, such large market
orders are not particularly frequent, especially when queues are large, but are still
important since they lead to immediate depletion. In this section, we introduce a
way to account for these events.

6.3.1 An Extended Fokker–Planck Description

Let Π(V) denote the probability per unit time of the arrival of a market order
that consumes the entire queue under consideration, and let Π†(V) denote the
probability per unit time of the arrival of a market order that consumes the entire
opposite-side best queue. Using this notation, we can extend Equation (6.3) to
account for these events by re-writing P(V, t) as

∂P(V, t)
∂t

= −∂V [F(V)P(V, t)]+ ∂2
VV [D(V)P(V, t)]+J(V, t)

−Π(V)P(V, t)+ Π̄(t) (φ0�(V |0)+ (1−φ0)P2-best(V))

− (1−φ0)Π†(V)P(V, t)+ (1−φ0)Π̄†(t)�(V |0), (6.13)

where J is given by Equation (6.2) and

Π̄(t) =
∫

dVΠ(V)P(V, t),

and similarly for Π̄†(t). The second line in Equation (6.13) says that if the queue
is instantaneously depleted to zero (which occurs with probability Π̄(t)), then it
either bounces back (with probability φ0) or is replaced by the second-best queue
(with probability 1−φ0). The third line describes what happens when the opposite
queue is instantaneously depleted to zero (which occurs with probability Π̄†(t)).
With probability 1 − φ0, the queue we are looking at becomes the second-best
queue and is replaced by a new queue with volume taken from the distribution
�(V |0); otherwise (with probability φ0), it bounces back so nothing changes.

As we saw in Chapter 5, diffusion processes typically produce an extremely
small exit flux. Depending on the frequency with which they occur, large market
order arrivals can be a much more efficient mechanism than standard diffusions for
emptying the queue. In other words, the Π(V) and Π†(V) terms in Equation (6.13)
can cause a considerable impact on queue dynamics.

Let us define
Π∗ :=max

[
Π(V∗),Π†(V∗)

]
. (6.14)

Three situations can occur:
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(i) Π∗ � J0 � κ. In this case, the probability of large market orders is so small
that their effect can be neglected.

(ii) J0 � Π∗ � κ. In this case, large market order arrivals are the primary
mechanism driving queue depletions. However, since the typical time
between these large market order arrivals (which is of order 1/Π∗) is still
very large compared to the equilibration time 1/κ, the stationary distribution
Pst.(V) is still approximately equal to the Boltzmann–Gibbs measure in
Equation (6.11).

(iii) κ � Π∗. In this case, large market orders arrive so frequently that the queue
does not have time to equilibrate between their arrivals. Therefore, the whole
Fokker–Planck approach breaks down. Assets with small relative tick size
(see Section 3.1.5) typically fall into this case, because the size of a typical
queue for such assets is similar to the size of a typical market order.
Empirically, one finds Π∗ to be smaller than but comparable to J0 (see
Table 6.1), which leaves us in an intermediate regime between cases (i)
and (ii).

In the limit of small Π and Π†, and if the term J(V, t) is still negligible, one can still
find an explicit form for the stationary solution. Assuming for simplicity that

P2-best(V) ≈ Pst.(V)

and that the incipient queues are small, i.e.

�(V |0) ≈ δ(V −υ0),

the stationary equation for V > 0 now reads:

0 = ∂V [F(V)Pst.(V)]− ∂2
VV [D(V)Pst.(V)]+

+ ε
[
Π(V)+ (1−φ0)(Π†(V)− Π̄st.)

]
Pst.(V),

where Π̄st. is defined as:

Π̄st. :=
∫

dVΠ(V)Pst.(V).

We also introduced ε� 1 as a device to highlight that all of Π(V), Π†(V) and Π̄st. are
small. This device is convenient for keeping track of the order to which we expand
the solution. Looking for a stationary solution of the form

Pst.(V) =
A(V)
D(V)

e−W(V), (6.15)

one finds that B(V) = A′(V)/A(V) obeys the so-called Ricatti equation

B2 + B′ −W′B− εΠ̂ = 0; Π̂(V) :=
Π(V)+ (1−φ0)(Π†(V)− Π̄st.)

D(V)
.

When the probability of large market orders is sufficiently small, one can look for
a solution B ∝ ε and neglect the B2 term, which is of order ε2. The resulting linear
equation leads to the following result, valid to order ε:

ln A(V) = −
∫ V

0
dV ′

∫ ∞

V′
dV ′′Π̂(V ′′)eW(V′)−W(V′′). (6.16)

If needed, this solution can be plugged back into the Ricatti equation to find the
correction to order ε2.
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6.3.2 When Large Market Orders Dominate

If F(V) is always positive, then in the absence of large market order arrivals, the
queue volume tends to infinity and the Fokker–Planck equation has no stationary
state. However, the arrivals of large market orders can keep the queue length finite in
this case. To build intuition, let’s consider the simplest case where

F(V) = F0 > 0,

D(V) = D0 > 0,

Π(V) = Π†(V) = Π0 > 0

are all strictly positive constants. We also assume that P2-best(V) = Pst.(V). In this
case, the diffusive flux J(V, t) is very small. Therefore, in the stationary limit,
Equation (6.13) becomes, for V > 0,

−F0∂V Pst.(V)+D0∂
2
VV Pst.(V)−Π0Pst.(V) = 0, (6.17)

where �(V |0) is again assumed to be localised around V = 0.

Because Equation (6.17) is a linear, second-order ODE, we look for a solution of the
form Pst.(V) ∝ eaV , which leads to the following second-degree equation for a:

D0a2 −F0a−Π0 = 0.

This equation has solutions

a± = (F0 ±
√

F2
0 + 4Π0D0)/2D0.

For Pst.(V) to be normalisable to 1, we require the solution in which Pst.(V) tends to
0 for large V . Therefore, we require a < 0, so we choose a = a−, and

Pst.(V) ≈ |a−|e−|a−|V ,
which decays exponentially in V . In summary, the arrival of sweeping market orders
makes the probability of large queues exponentially small, even when the drift F(V)
is positive.

6.4 Analysing Empirical Data

6.4.1 Calibrating the Fokker–Planck Equation

We now turn our attention to fitting the Fokker–Planck model to empirical data,
to see how well the results we have derived throughout the chapter are consistent
with the behaviour observed in real markets.

As we discussed in Section 4.2, order flows in financial markets undergo
strong intra-day patterns. Attempting to fit the model without acknowledging these
intra-day seasonalities is likely to produce poor estimates of the input parameters
and poor outputs. To avoid this problem, we take the simple approach of only
studying a period of time within which order flow is approximately stationary.
As in the previous chapters, we simply discard the first and last hour of trading
activity each day. This removes the strongest element of the intra-day pattern.
In the following, we work in rescaled units u := V/V̄ , where V̄ is the mean
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queue length, allowing the comparison between different stocks (and different
time periods if volumes evolve substantially between these periods). Indeed, a
remarkable property of the dynamics of queues is approximate scale invariance,
i.e. once rescaled by the local average volume, all statistical properties of queue
sizes are similar. Throughout this section, we will call the quantity u the rescaled
volume.

Then, one can measure the drift F(u) and diffusion D(u) as conditional empirical
averages of volume changes in a unit event-time interval δn = 1, using:4

F(u) =
1
δn
〈u(n+ δn)− u(n)〉|u(n)=u ,

D(u) =
1

2δn

〈
(u(n+ δn)− u(n))2

〉∣∣∣∣
u(n)=u

.

For simplicity, we restrict our analysis to the most natural choice δn = 1. Because
we consider single-queue dynamics, event-time in this section refers to events only
pertaining to the queue under consideration. Thus, each event necessarily changes
the queue volume. (Note that we exclude all market order events that only execute
hidden volume, which are irrelevant for the dynamics of the visible volume in the
queue.)

Table 6.1 lists several summary statistics for the queue dynamics of CSCO
and INTC, both of which are large-tick stocks (see Table 4.1). There are some
noteworthy features:

• The rescaled volume changes per event are small (〈|δu|〉� 6%), which vindicates
the use of a Fokker–Planck approach for the dynamics of large-tick queues.

• The initial rescaled volume of incipient queues (i.e. queues born when the spread
momentarily opens) is around 10–15% on average, meaning that the choice
�(V |0) = δ(V − 0+) is only a rough first approximation.

• The average number of events before depletion is large (∼ 100), which suggests
that queues are typically in the stationary regime of the Fokker–Planck
dynamics.

• The average time to depletion is smaller for incipient queues than when
second-best queues become best queues. This makes sense since the initial
volumes are smaller in the former case.

• More than 20% of the depletion events lead to immediate refill, with no price
change.

4 Choosing δn > 1 is also possible, although some ambiguity is introduced in this case, because the bid- or
ask-prices may have changed between n and n+δn. In particular, if the price changes and the queue is replaced
by a new queue with different volume, conditioning to u(n) = u makes little sense, as the volume might be very
different for the last events. However, one can adopt reasonable conventions to give a meaning to u, leading in
the end to very similar results for δn = 10 and δn = 1.
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Table 6.1. Summary statistics of queue-depleting events for INTC and
CSCO. The initial volume is typically small for incipient queues (i.e. for
queues born in an open spread), and large when the second-best queue
becomes the best queue. The empirical values of the average time to
depletion imply that the exit flux J0 is of the order of 0.01. This is (see
Figure 6.2) roughly ten times the probability of a large sweeping MO
hitting an average queue: Π∗ � 0.001.

INTC CSCO

Number of events per queue in 5 min. 4117 3031
Average queue volume [shares] 5112 9047
Average rescaled volume change per event 〈|δu|〉 0.065 0.060
Average rescaled volume of incipient queues 0.140 0.114
Average rescaled volume of former 2nd-best queues 1.45 1.46
Probability that next event is LO 0.506 0.505
Probability that next event is CA 0.472 0.474
Probability that next event is MO 0.022 0.021
Probability that next event is a sweeping MO Π̄st. 0.0059 0.0046
Probability that next event depletes the queue 0.0067 0.0052
Refill probability after depletion φ0 0.219 0.234
Average event-time to depletion (from incipient) 63 78
Average event-time to depletion (from 2nd-best) 180 248

• The total probability of sweeping market orders is � 5 × 10−3 per event.
Most such market orders are executed when the queue is already small (see
Figure 6.2).

We now turn to the shape of the drift F(u) and diffusion D(u) curves, shown
in Figure 6.1. Interestingly, these shapes are quite similar for the two stocks
considered here, and for a variety of other stocks as well.5 One sees that F(u)
is positive for small queues, vanishes for some rescaled volume uc � 1.5, and
becomes negative for u > uc. As one would expect, small queues grow on average
and long queues shrink on average. The shape of F(u) is however more complex
than those assumed in the models considered in Chapter 5, where F(u) was either
independent of u and slightly negative (Section 5.3.4), or a linear function of u with
a negative slope (Section 5.4.4). Empirically, F(u) shows some convexity, which
can be roughly fitted as F(u) = F0 −F1uζ with F0,F1 constants and ζ an exponent
between 0 and 1. This shape for F(u) corresponds to a model intermediate between
the diffusion model and the Q-CIR model, where the cancellation rate grows
sublinearly with the size of the queue. Note the scale of the y-axis, which reveals

5 On this point, see: Garèche, A., Disdier, G., Kockelkoren, J., & Bouchaud, J. P. (2013). Fokker-Planck
description for the queue dynamics of large-tick stocks. Physical Review E, 88(3), 032809.
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Figure 6.1. (Left panel) Drift F(u) and (right panel) diffusion D(u) as a function
of the normalised queue volume u = V/V̄ , for INTC and CSCO, measured with
δn = 1. Note that F(u) changes sign at u = uc � 1.5.

the small magnitude of the drift: a few percent of volume change on average, even
for large queues with u ∼ 5.

The diffusion coefficient D(u) grows with volume, meaning that typical volume
changes themselves grow with the size of the queue. This reflects the fact that the
size of incoming market orders and incoming limit orders are both typically larger
when the size of the queue is larger. In the simple models of Chapter 5, D(u) is
either flat or linear in u (see Section 5.4.4), whereas the empirically determined
D(u) grows faster with u.

Figure 6.2 shows the probability of sweeping market orders Π(u) and Π†(u). As
expected, the probability of a queue disappearing by being fully consumed by a
single market order is a strongly decreasing function of its volume (note that the
y-axis is in log-scale). The probability that a queue is hit by a sweeping order is an
increasing function of the opposite-side volume. This suggests that a large volume
imbalance between the two queues tends to trigger a sweeping market order that
consumes the smaller of the two volumes. We provide a detailed discussion of this
phenomenon in Section 7.2.

6.4.2 Predicting the Stationary Distribution of Queue Sizes

We can now evaluate the accuracy of the Fokker–Planck formalism by comparing
the predicted stationary queue size distribution (in event-time) with the corre-
sponding empirical distribution. From the knowledge of F(u), D(u), Π(u) and
Π†(u), we can use Equation (6.16) to estimate the stationary distribution of rescaled
queue sizes, Pst.(u). Figure 6.3 compares the empirically determined distribution
with the theoretical Fokker–Planck prediction, Equation (6.16). The overall shape
of Pst.(u) is rather well reproduced by the Fokker–Planck prediction, in particular
in the right tail (u > uc) where the negative drift F(u) prevents the queues from
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becoming very large. This result again vindicates the use of the Fokker–Planck
formalism to describe the dynamics of queues for large-tick assets.6

Notice that Pst.(u) is hump-shaped, but not sharply peaked (in the sense
that the ratio Pst.(u∗)/Pst.(0) is not very large for these stocks). This means
that the “barrier height” for depletion is not high, which is contrary to the
simplifying assumption that we made in Section 6.2.2. In other words, the potential

6 Recall that Equation (6.16) further assumes that �(u|0) = δ(u − 0+) and that P2-best(u) ≈ Pst.(u), two
approximations that are quite rough and that could be easily improved.
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well W(u∗) = −∫ u∗
du F(u)/D(u) is too shallow to block diffusion-induced

depletion.

6.5 Conclusion

In this chapter, we have introduced an intuitive and flexible description of the
queue dynamics for large-tick assets, based on the Fokker–Planck formalism.
Interestingly, this description includes some dependence on the current state of
the queue, through the explicit dependence of the drift and diffusion constant on
the queue size. However, this approach required no restrictive assumptions on the
dependence of the arrival or cancellation rates on queue size, nor on the size of
queue changes. The Fokker–Planck approach can also accommodate jump events,
which correspond to sudden changes of the bid or ask prices.

All of the quantities involved in this approach can be calibrated using
event-resolved data that describes the order flow at the best quotes. One important
observation was that the dynamical process is approximately scale invariant, in
the sense that the only relevant variable is the ratio of the volume of the queue V
to its average value V̄ . While the latter shows intra-day seasonalities and strong
variability across stocks and time periods, the dynamics of the rescaled volumes
is, to first approximation, universal.

The validity of the Fokker–Planck approximation relies on elementary volume
changes δV being small. Although this assumption fails for small-tick assets, it is
well justified for large-tick assets (see Table 6.1). Correspondingly, when solved to
find the stationary distribution of rescaled volumes in a queue, the Fokker–Planck
equation calibrated on dynamical data fares quite well at reproducing the empirical
distribution.

For the two large-tick stocks that we investigated in this chapter (INTC and
CSCO), the distribution of queue sizes is not strongly peaked around its maximum
V∗, as the Q-CIR model would predict. This observation can be traced back to
the fact that the ratio of the drift to the diffusion is not very large, which implies
that the depletion time is large but not extremely large. The Q-CIR model, on
the other hand, would predict that queues empty exceedingly rarely (see also
Chapter 8).

As we will discuss in the next chapter, the fact that the depletion time is
moderate allows one to predict which of the bid-queue or the ask-queue is most
likely to empty first. As we will conclude in Section 7.3.3, reality seems to be best
described by a model intermediate between the diffusive model (with a constant
cancellation rate per queue) and the Q-CIR model (with a constant cancellation
rate per order).
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Take-Home Messages

(i) Under the assumptions that the best bid- and ask-queues evolve
independently and via small increments, it is possible to write 1-D
Fokker–Planck equations for the resulting queue dynamics.

(ii) It is straightforward to calibrate the Fokker–Planck equation on
real data. The theoretical stationary queue distribution can be found
using the Boltzmann–Gibbs measure, and is close to the empirical
distribution.

(iii) Taking large (sweeping) market orders into account significantly
improves the fit to the data. This suggests that the small-increments
hypothesis central to the Fokker–Planck approach is too restrictive
for modelling real order flow.

6.6 Further Reading

See also Section 5.6.
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7

Joint-Queue Dynamics for
Large-Tick Stocks

What is the logic of all this? Why is the smoke of this pipe going to the right rather
than to the left? Mad, completely mad, he who calculates his bets, who puts reason
on his side!

(Alfred de Musset)

In Chapter 6, we considered how to model either the best bid-queue or the best
ask-queue in an LOB for a large-tick stock. Although this approach enabled us
to derive many interesting and useful results about single-queue dynamics, it
is clear that the dynamics of the bid-queue and the dynamics of the ask-queue
mutually influence each other. In this chapter, we therefore extend our framework
to consider the joint dynamics of the best bid- and ask-queues together.

We begin the chapter by discussing the bid- and ask-queues’ “race to the
bottom”, which is the core mechanism that drives price changes in LOBs for
large-tick stocks. We present some empirical results to illustrate how such races
play out in reality, then turn our attention to modelling such races. We first consider
a race in which the bid- and ask-queues are assumed to evolve independently, and
derive several results from the corresponding model. We next turn our attention to
a more general case, in which we allow the dynamics of the bid- and ask-queues
to be correlated. We end the chapter by introducing an even more versatile
framework, by extending the Fokker–Planck framework from the previous two
chapters to also encompass the coupled dynamics of the two queues. We illustrate
that this approach provides a consistent description of the joint dynamics observed
in real LOBs for large-tick stocks.

This chapter is not essential to the main story of the book.

117



118 Joint-Queue Dynamics for Large-Tick Stocks

7.1 The Race to the Bottom

Recall from Chapter 3 that in an LOB for a large-tick stock, the bid–ask spread
is very often equal to its minimum possible size, s(t) = ϑ. This has an important
consequence for LOB dynamics, because it removes the possibility that a new limit
order will arrive inside the spread. Therefore, whenever s(t) = ϑ, the only way for
either the bid-price or the ask-price to change is for one of the order queues at the
best quotes to deplete to V = 0.

If the bid-queue depletes before the ask-queue, then the bid-price moves down
(but might bounce back up immediately – see below). If the ask-queue depletes
before the bid-queue, then the ask-price moves up (but might bounce back down
immediately). Therefore, price changes in this situation can be regarded as the
consequence of a simple race between the bid- and ask-queues, in which the winner
(i.e. the queue that depletes first) dictates the direction of the next price change.

By considering some initial volumes V0
b and V0

a , then considering the subsequent
market order arrivals, limit order arrivals, and cancellations that occur at b(t) and
a(t), we can derive models for the two-dimensional trajectory (Vb(t),Va(t)) (see
Figure 7.1), in which Vb(t) and Va(t) may be regarded as racing to zero, until at
some time t1 one queue empties and the spread momentarily widens. After t1, a
limit order will very likely rapidly fill the (now widened) spread. What happens in
that case will be discussed in depth in Section 7.5.

Many interesting questions about the dynamics of the bid- and ask-queues
spring to mind. At some randomly chosen time t:
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Figure 7.1. Typical trajectories in the plane (Vb,Va), starting (circle) at (V0
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and ending (diamond) by the depletion of one of the two queues. The left panel
shows simulation data for a pair of uncoupled random walks; the right panel
shows the real data for CSCO.
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• What is the joint probability P(Vb,Va) that the ask volume is Va(t) = Va and the
bid volume is Vb(t) = Vb?

• Having observed the two volumes (Vb(t),Va(t)), what is the probability p± that
the next mid-price move is upwards?

• Having observed the two volumes (Vb(t),Va(t)), what is the rateΦ(τ) for the next
mid-price move (up or down) to take place at time t+ τ?

• Having observed the two volumes (Vb(t),Va(t)), what is the probability that an
order with a given priority at the bid or at the ask will be executed before the
mid-price changes?

Throughout the remainder of this chapter, we address the first two topics and
some other questions about joint-queue dynamics for large-tick stocks. The last
two questions, as well as many others, can be studied using similar tools.

7.2 Empirical Results

We first present some empirical results to illustrate joint-queue dynamics for
large-tick stocks in real markets. Given that the state space we consider is the
two-dimensional space (Vb,Va), one possible approach could be to estimate empir-
ically the fraction of times that a race ended by an upward price movement (rather
than a downward price movement) for a given initial choice of (Vb,Va). However,
this approach suffers the considerable drawback of needing to estimate and
interpret a two-dimensional surface, for which many choices of initial conditions
have relatively few data points because they occur relatively infrequently in real
markets. Furthermore, the scale invariance property of the queue dynamics, noted
in the previous chapter and approximately valid when queues are large, suggests
to investigate this problem not by considering the two-dimensional input quantity
(Vb,Va), but instead by considering the one-dimensional queue imbalance ratio

I :=
Vb

Vb +Va
. (7.1)

The quantity I measures the (normalised) imbalance between Vb and Va, and
thereby provides a quantitative assessment of the relative strengths of buying and
selling pressure in an LOB. Observe that I is invariant upon rescaling both volumes
by the same factor α (i.e. Va→ αVa and Vb→ αVb), and takes values in the open
interval (0,1). A value I ≈ 0 corresponds to a situation where the ask-queue is
much larger than the bid-queue, which suggests that there is a net positive selling
pressure in the LOB that will most likely push the price downwards. A value I ≈ 1
corresponds to a situation where the bid-queue is much larger than the ask-queue,
which suggests that there is a net positive buying pressure in the LOB that will
most likely push the price upwards. A value I ≈ 1

2 corresponds to a situation in
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Figure 7.2. Probability that the ask-queue depletes before the bid-queue, as a
function of the queue imbalance I for INTC and CSCO. We also show (dashed
curves) the result of a simple model where the volume of the bid- and ask-queues
undergo independent random walks, given by Equation (7.6).

which the bid- and ask-queues have approximately equal lengths, which suggests
that the buying and selling pressures in the LOB are approximately balanced.

We now turn our attention to an empirical analysis of how the volume imbalance
I impacts the outcome of a given race. To do so, we consider the value of I at some
times chosen uniformly at random, then fast-forward to see which of the bid- or
ask-queues depleted to zero first. We can then estimate the probability p+(I) as
the fraction of races for which the subsequent price movement was upwards. We
plot these empirical results in Figure 7.2. The graph reveals a strong, monotonic
correlation between the queue imbalance and the direction of the next price move.1

Throughout the remainder of this chapter, we will introduce several different
models for the joint-queue dynamics of large-tick stocks. For each such model, we
will estimate the relevant parameters from data, then plot the model’s predicted
output for the probability that a race with a given input imbalance will result in
an upward price movement. We will then compare each model’s outputs with our
empirical results in Figure 7.2 to assess how well (or otherwise) each approach is
able to reproduce realistic market dynamics.

7.3 Independent Queues

We first consider a race in which the bid- and ask-queues evolve independently,
according to the dynamics that we first introduced in Chapter 5 (in which limit
order arrivals, market order arrivals, and cancellations are each assumed to occur

1 This has been called the “worst kept secret of high-frequency traders”, see, e.g., http://market-microstructure.
institutlouisbachelier.org/uploads/91 3%20STOIKOV%20Microstructure talk.pdf
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according to independent Poisson processes). In Section 5.3, we studied a model
in which cancellations occur as a Poisson process with fixed rate for the whole
queue together, and in Section 5.4, we studied a model in which each individual
limit order is cancelled with some rate (such that at time t, the total cancellation
rate for the whole bid-queue is proportional to Vb(t) and the total cancellation rate
for the whole ask-queue is proportional to Va(t)). For describing the dynamics of
either the bid-queue or ask-queue in isolation, these approaches can be written:{

V→ V + 1 with rate λdt
V→ V − 1 with rate (μ+ νVζ)dt,

(7.2)

where ζ = 0 for the first model and ζ = 1 for the second model.
To describe the joint dynamics of the bid- and ask-queues together, we replace

the parameters λ, μ, and ν with the parameters λb, λa, μb, μa, νb and νa, where
the subscript denotes the relevant queue. To begin with, let us suppose that the
initial bid- and ask-queue volumes are (Vb,Va), that their subsequent evolution is
governed by (7.2), with no coupling between the two queues, and that the rate
parameters obey

λb = λa,

μb = μa,

νb = νa.

When queues are independent, there are several different approaches for obtaining
the probability p+ that the ask-queue empties first. One such approach is to
consider an integral that counts all the possible outcomes where the first-hitting
time of the bid-queue is larger than that of the ask-queue,

p+(Vb,Va) =
∫ ∞

0
dτΦ(τ,Va)

∫ ∞

τ

dτ′Φ(τ′,Vb), (7.3)

where Φ(τ,V) is the distribution of first-hitting times considered in Section 5.3.2.
An equivalent approach is to follow a similar reasoning to the one that we

employed in Equation (5.16):

p+(Vb,Va) =
W+(Vb)

Z(Vb,Va)
p+(Vb + 1,Va)+

W+(Va)
Z(Vb,Va)

p+(Vb,Va + 1)

+
W−(Vb)

Z(Vb,Va)
p+(Vb − 1,Va)+

W−(Va)
Z(Vb,Va)

p+(Vb,Va − 1),
(7.4)

where Z(Vb,Va) = W+(Vb) +W−(Vb) +W+(Va) +W−(Va), and with the boundary
conditions p+(Vb > 0,Va = 0) = 1 and p+(Vb = 0,Va > 0) = 0. We will exploit this
general framework in simple cases in the next sections.
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7.3.1 Races between Diffusive Queues

We first consider the diffusive case, where cancellations occur as a Poisson process
with fixed rate for the whole queue together. This corresponds to the case ζ = 0 in
Equation (7.2) and the case W+(V) = λ and W−(V) = μ + ν in Equation (7.4), for
both the bid- and the ask-queues.

As we discussed in Chapter 5, the non-critical case (where λ < μ+ν) is not very
interesting, because it cannot produce long queues. Recall from Section 5.3.2 that
the mean first-hitting time of a single queue is a Gaussian random variable with
mean V/(μ + ν − λ) and variance proportional to V . If one neglects fluctuations
(of order

√
V), it is clear that the shortest queue empties first. There is significant

uncertainty only if the width of the first-hitting time distribution becomes larger
than the difference |Va − Vb|/(μ + ν − λ). For large queues, this can only happen
when Va ∼ Vb, with |Va − Vb| of the order of

√
Va (∼ √Vb). In other words, the

probability that the ask-queue empties first is close to 1 when Va�Vb and close to
0 when Va	 Vb, with a sharp, step-like transition of width

√
Va,b around Va = Vb.

The more interesting case is the critical case (where λ=μ+ν). We study this case
in the continuum limit, (see Section 5.3.4).2 In this case, W+(V) =W−(V) = λ and
Equation (7.4) becomes Laplace’s equation in the first quadrant (Vb > 0,Va > 0):

λ
(
∂2

VbVb
+ ∂2

VaVa

)
p+(Vb,Va) = 0; p+(Vb,0) = 1; p+(0,Va) = 0. (7.5)

One approach to solving this equation is to introduce polar coordinates (R, θ), with

R =
√

V2
b +V2

a ,

θ = arctan(Vb/Va).

In polar coordinates, Laplace’s equation becomes(
∂2

RR +R−2∂2
θθ

)
p+(R, θ) = 0.

One can check that the only acceptable solution to this equation is of the form
p+ =Aθ (i.e. independent of R). The constant A is fixed by the boundary conditions,
so that the solution finally reads:

p+(I) := p+(Vb,Va) =
2
π

arctan
( I
1− I

)
, (7.6)

with
I

1− I
=

Vb

Va
. (7.7)

Therefore, we find that p+ is scale invariant, i.e. it depends only on the ratio Vb/Va

(or equivalently on the volume imbalance I), but not on Va and Vb separately.

2 For a detailed discussion of the discrete case, see Cont, R. & De Larrard, A. (2013). Price dynamics in a
Markovian limit order market. SIAM Journal on Financial Mathematics, 4(1), 1–25.
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As a sanity check, any solution must obey p+(I) = p−(1 − I) = 1 − p+(1 − I),
by the symmetry of the system. We can verify that Equation (7.6) indeed satisfies
these conditions by direct substitution. Figure 7.2 compares Equation (7.6) with
empirical results. Clearly, the independent, diffusive queue model is unable to
predict the observed concavity of p+(I).

This framework can be extended to the case where λb � λa, where both queues
are still critical but one queue is more active than the other. The Laplace equation
then becomes: (

λb∂
2
VbVb
+λa∂

2
VaVa

)
p+(Vb,Va) = 0;

p+(Vb,0) = 1;

p+(0,Va) = 0.

By setting

Va =
√
λaua,

Vb =
√
λbub,

we arrive back at the same system as in Equation (7.5), leading to:

p+(Vb,Va) =
2
π

arctan

⎛⎜⎜⎜⎜⎝√λa

λb

Vb

Va

⎞⎟⎟⎟⎟⎠ .
This result provides a simple interpretation of the dynamics in the critical case
(λ = μ+ ν): for queues of the same size, the fastest-changing queue is more likely
to empty first. For example, if Va = Vb but λa > λb, then p+ > 1/2 (see Figure 7.3).

7.3.2 Diffusive Queues with Correlated Noise

As we saw in Section 7.3.1, p+ is an increasing function of I, even when the order
flow is completely random – meaning that short queues tend to disappear first. This
empirical behaviour is well known by traders, which causes it to induce a feedback
loop between traders’ observations and actions. For example, when the bid-queue
increases in size, traders might think that the price is more likely to go up, and
therefore some sellers with limit orders in the ask-queue might cancel, while some
buyers might rush to buy quickly (before the anticipated price move). Both of these
actions lead to a decreased volume of the ask-queue.

Through this feedback mechanism, the dynamics of the bid- and ask-queue
become negatively correlated (see Section 7.4.2). How might we extend our
models of joint-queue dynamics to reflect this empirical behaviour? The simplest
approach is to consider a diffusive framework with correlated noise acting on the
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function of the queue imbalance I, for diffusive queues with (solid line) λa = λb
and (dashed line) λa = 2λb. For similar volumes, the fastest changing queue has a
higher probability of depleting first. The dotted line represents the diagonal.

two queues. More formally, this amounts to saying that the random increments can
be written as

δVb = ξ
√

1+ ρ+ ξ̂
√

1− ρ,
δVa = ξ

√
1+ ρ− ξ̂√1− ρ,

where ξ and ξ̂ are independent noise terms with zero mean and arbitrary but equal
variances, and ρ is the correlation coefficient between the increments at the bid-
and ask-queues.

From this decomposition, one sees that the sum

S = Va +Vb

and the difference
Δ = Vb −Va

evolve independently, but with noises of different variances (respectively, 1+ρ for
S and 1− ρ for Δ). In the (S ,Δ) plane (with S ≥ 0 and −S ≤ Δ ≤ S ), the Laplace
equation from Section 7.3.1 becomes(

(1+ ρ)∂2
S S + (1− ρ)∂2

ΔΔ

)
p+(S ,Δ) = 0, (7.8)

with boundary conditions

p+(S ,S ) = 1,

p+(S ,−S ) = 0.
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Defining

S ′ =
S√
1+ ρ

,

Δ′ =
Δ√
1− ρ,

we recover exactly the independent queue problem of Section 7.3.1. In these new
coordinates, the boundaries Δ = ±S now have slopes ±√

(1+ ρ)/(1− ρ), so the
wedge has an opening half-angle

ψ = arctan

⎛⎜⎜⎜⎜⎜⎜⎝
√

1+ ρ
1− ρ

⎞⎟⎟⎟⎟⎟⎟⎠ .
In terms of the new coordinates, the initial conditions read

S ′ =
Va +Vb√

1+ ρ
,

Δ′ =
Vb −Va√

1− ρ .

Therefore, the angle corresponding to the initial condition (Vb,Va) is given by

θ0 = arctan

⎛⎜⎜⎜⎜⎜⎜⎝
√

1+ ρ
1− ρ

Vb −Va

Vb +Va

⎞⎟⎟⎟⎟⎟⎟⎠ . (7.9)

The solution p+ = Aθ easily generalises for a wedge of arbitrary half-angle ψ, as:

p+ =
1
2
+
θ0

2ψ
. (7.10)

In the limit of zero correlations, ρ= 0, so ψ= π/4 and one indeed recovers (after
simple trigonometric manipulations)

p+ =
2
π

arctan(Vb/Va),

which is the same result as we found in Equation (7.6).
In the limit of perfectly anti-correlated queues, ρ = −1, so the wedge

becomes extremely sharp (θ0,ψ → 0+) and the problem becomes the famous
one-dimensional gambler’s ruin, for which the behaviour is linear in the
imbalance:

p+ = I.

Figure 7.4 shows p+ as a function of I, for the three values ψ = π/4, ψ = 3π/8
and ψ = 0+, which correspond to ρ = 0, ρ = 0.71 and ρ = −1, respectively. For all
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Figure 7.4. Probability that the ask-queue depletes before the bid-queue, as a
function of the queue imbalance I. The solid curves denote empirical estimates
for INTC and CSCO; the other curves denote theoretical predictions for (dotted
curve) ρ = 0, (dashed curve) ρ = 0.71 and (dash-dotted curve) ρ = −1.

values of correlations, the dependence of p+ on I has an inverted concavity when
compared with empirical data. We now turn to a model that correctly captures this
concavity.

7.3.3 Races between Long, Self-Stabilising Queues

We now consider the Q-CIR case (see Section 5.4.4), with W+(V)= λ and W−(V)=
μ+ νV , in the limit of long equilibrium sizes V∗ = (λ−μ)/ν	 1. In the notation of
Section 7.2, this corresponds to the case ζ = 1.3 Using the fact that the distribution
of first-hitting times is Poissonian (see Section 5.4.3), Equation (7.3) becomes very
simple:

p+(Vb,Va) ≈ Eb[T1]
Ea[T1]+Eb[T1]

,

where Eb[T1] and Ea[T1] denote the mean first-hitting times of the bid- and
ask-queues, respectively.

This result illustrates that the queue with the smaller mean first-hitting time has
a larger probability of emptying first. However, because the mean first-hitting time
is nearly independent of the initial queue lengths when V∗ is large, we discover
that in the present framework, the probability that a given queue empties first only
depends very weakly on the queue imbalance I, except when at least one of the
queues become small.

Figure 7.5 shows how p+ depends on I, with an initial condition chosen with the
stationary measure. Interestingly, the plateau region for I ≈ 1/2 is less pronounced

3 In fact, the results that we present here actually hold for any ζ > 0.
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Figure 7.5. Probability that the ask-queue depletes before the bid-queue, as a
function of the queue imbalance I within the stationary Q-CIR model with
(dashed line) λ = 1 and μ = ν = 0.1 (corresponding to V∗ = 10), and (dotted line)
λ= 0.5 and μ= ν= 0.1 (corresponding to V∗ = 5). We also show the same empirical
data as in Figure 7.2 for INTC; its concavity is well captured by the Q-CIR model
with a moderate value of V∗.

when V∗ is not too large, and the curves start resembling quite closely those
observed empirically. In particular, the Q-CIR model (i.e. with ζ = 1) provides
qualitative insights into the concavity of p+(I) that are not correctly predicted by
the diffusive model (i.e. with ζ = 0).

We thus recover the same conclusion as in Section 6.5: the queue dynamics
of large-tick stocks is in a regime where drift effects are comparable to diffusion
effects – in other words, that the effective potential defined in Sections 5.4.5 and
6.2.1 is shallow. Reality is probably best described by a value of ζ somewhere
between 0 and 1 (see also Figure 6.1).

7.4 The Coupled Dynamics of the Best Queues

In the previous section, we postulated some simple dynamics for the volumes of
the queues. We now consider a more flexible approach to modelling the joint-queue
dynamics, which more clearly elicits the nature of the coupling between the two
queues, and can be calibrated on empirical data.

7.4.1 A Two-Dimensional Fokker–Planck Equation

Generalising the arguments from Section 6.2, one finds (neglecting all price-
changing events) that the bivariate distribution of the bid- and ask-queue sizes
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obeys a two-dimensional Fokker–Planck equation:

∂P(Vb,Va, t)
∂t

=− ∂Vb [Fb(Vb,Va)P(Vb,Va, t)]

− ∂Va [Fa(Vb,Va)P(Vb,Va, t)]

+ ∂2
VbVb

[Dbb(Vb,Va)P(Vb,Va, t)]

+ ∂2
VaVa

[Daa(Vb,Va)P(Vb,Va, t)]

+ 2∂2
VbVa

[Dba(Vb,Va)P(Vb,Va, t)] , (7.11)

where �F := (Fb,Fa) is a two-dimensional vector field called the flow field and
D = (Daa,Dab; Dba,Dbb) is a space-dependent, two-dimensional diffusion matrix.
Similarly to Equation (6.8), these objects are defined as:

Fi(Vb,Va) :=
1
τc

∑
δVi

δVi �(δVi|Vb,Va), i ∈ {b,a} ;

Di j(Vb,Va) :=
1

2τc

∑
δVi,δVj

δViδVj �(δVi, δVj|Vb,Va), i, j ∈ {b,a} ,
(7.12)

where � is the distribution of elementary volume changes, conditioned to the
current size of the queues.

Note that Dba and Dab are the only terms that require explicit knowledge of
the joint distribution of simultaneous size changes in both queues. (By symmetry,
these terms are equal). These are the only terms that are sensitive to correlation
between the order flow at the best bid- and ask-queues. However, even if these
terms were absent, the dynamics of the two queues are coupled by the explicit
dependence of the drift field �F and the diagonal elements of D on the sizes of both
the bid- and ask-queues. Such a drift-induced coupling is completely absent from
the models in Sections 7.3 and 7.3.2.

7.4.2 Empirical Calibration

It is interesting to consider how the flow field �F = (Fb,Fa) behaves empirically.
We calculate the statistics of the flow using δn = 10 events (i.e. we measure the
queue lengths once every 10 events, where each event corresponds to whenever
one of the two queues changes size). Figure 7.6 shows �F for INTC and CSCO, as
a function of rescaled volumes ub = Vb/V̄b, ua = Va/V̄a. As the figure illustrates,
the flow field is very similar in both cases. As we expect from buy/sell symmetry,
the flow field obeys

Fb(Vb,Va) � Fa(Va,Vb).

These plots reveal that when both queues are small, their volumes tend to grow
on average, and when both queues are large, their volumes tend to decrease on



7.4 The Coupled Dynamics of the Best Queues 129

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

INTC CSCO

0 0.5 1 1.5 2 2.5 3

V
a /  

V

0

0.5

1

1.5

2

2.5

3

V
a /  

V

Vb /  V Vb /  V

Figure 7.6. Flow field �F of volume changes at the best bid and ask for (left
panel) INTC and (right panel) CSCO. To improve readability, the displayed vector
norms correspond to the square-root of the original vector lengths, rescaled by a
factor 10.

average. The flow vanishes (i.e. | �F| = 0) at only one point u∗a = u∗b � 1. The flow
lines are quite regular and appear to be nearly curl-free, which implies that �F can
be approximately written as a pure gradient �F = −�∇U, where U has a funnel-like
shape pointing towards (u∗b,u

∗
a).

Of course, a significant dispersion of the dynamics around the average flow
pattern occurs through the diffusion matrix. By symmetry, one expects

Dbb(Vb,Va) = Daa(Va,Vb),

which is indeed well-obeyed by the data.
Empirically, the variance of volume changes is found to depend mostly on the

same queue and very little on the opposite queue, so

Dbb(Vb,Va) � D(Vb),

Daa(Vb,Va) � D(Va),

where the function D(V) is as in Section 6.4. The cross-diffusion terms Dba = Dab

are found to be negative and of amplitude � 20% of the diagonal components. This
negative correlation was expected from the arguments given in Section 7.3.2, but
is rather weak.

7.4.3 Stationary State

In Section 6.2.1, we saw that it is always possible to write the stationary state of
the one-dimensional Fokker–Planck equation as a Boltzmann–Gibbs measure, in
terms of an effective potential W(V). Unfortunately, this is not the case in higher
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dimensions (including the present two-dimensional case), except in special cases.
For example, when

Daa(Va,Vb) = Dbb(Va,Vb) = D(Va,Vb),

Dab = Dba = 0,

and provided the flow can be written as a gradient,

Fa,b(Va,Vb) := −D(Va,Vb)∂a,bW(Va,Vb),

then the stationary state (again neglecting any reinjection term) can be written as a
Boltzmann–Gibbs measure

Pst.(Va,Vb) =
A

D(Va,Vb)
e−W(Va ,Vb). (7.13)

This result cannot be exactly applied to data, because Daa and Dbb are not equal to
each other for all Va,Vb. Still, because the flow field is nearly curl-free (as noted
above), Equation (7.13) is an acceptable approximation in the regime where Va and
Vb are not too large, such that D is approximately constant. Such an approximation
immediately leads to the conclusion that Pst.(Va,Vb) is peaked in the vicinity of the
point where the flow field �F vanishes. This agrees well with empirical observations.

7.5 What Happens After a Race Ends?

To understand the full price dynamics of large-tick stocks, one has to discuss
what happens at the end of the race between the two best quotes. Imagine that
the bid-queue has emptied first. Two things can happen at the now vacant price
level (see Section 6.1):

• With probability φ0, a buy limit order immediately refills the old bid position.
In this case, the mid-price reverts to its previous position (after having briefly
moved down by half a tick).

• With probability 1−φ0, a sell limit order immediately refills the old bid position.
In this case the mid-price has moved down by one tick; the new ask is the old
bid and the new bid is the old second-best bid.

In the second case, the price moves down, but the incipient ask-queue now faces
the old second-best bid-queue. The new ask-queue is therefore typically much
smaller than the bid-queue. The volume imbalance I introduced in Section 7.2
would then suggest that the new ask is more likely to disappear first. This would
lead to strong mean-reversion effects where the mid-price moves back up with
a large probability. In the purely stochastic models considered in the previous
chapters and in the next chapter, this is indeed what happens.

Therefore at least one extra ingredient must be present to counteract this
mean-reversion mechanism. As the flow lines of Figure 7.6 indicate, the new
ask-queue will in fact grow quickly at first, until the system equilibrates around
I ≈ 1/2. This is the spirit of the assumption made in Cont and De Larrard
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(2013), where the volume of both the new ask-queue and the new bid-queue are
independently chosen from the stationary distribution Pst.(V). Such an assumption
allows one to erase all memory of the past queue configuration, and automatically
generates a diffusive mid-price.

7.6 Conclusion

This ends a series of three chapters on the dynamics of long queues. Here, we
have mostly focused on the joint dynamics of the bid- and ask-queues, for which
the Fokker–Planck formalism offers an intuitive and flexible modelling framework.
As emphasised in the last chapter, the Fokker–Planck formalism can accommodate
any empirical dependence of the market order/limit order/cancellations rates
simultaneously on both bid- and ask-queue volumes.

Of particular interest is the outcome of the “race to the bottom” of the bid and
ask, which determines the probability of the direction of the next price change.
This probability is empirically found to be correlated with volume imbalance I,
with a non-trivial dependence on I. One of the most interesting conclusions of the
chapter is that purely diffusive models fail to describe the quantitative shape of this
function, even in the presence of noise correlations. In particular, the concavity of
the empirical relation is not reproduced by the theoretical formulas.

This discrepancy can be mitigated by the introduction of a drift component in the
queue dynamics, whereby small queues tend to grow on average and large queues
tend to shrink on average. The dynamics of real queues are well described by a
(two-dimensional) Fokker–Planck equation where the drift component is moderate
compared to diffusion, preventing depletion times from becoming exceedingly
large. Many dynamical properties of queues can be inferred from the interesting
structure of the flow field (see Figure 7.6) and the volume dependence of the
diffusion tensor (Equation (7.12)), which are found to be mostly independent of
the chosen large-tick stock, provided volumes are rescaled by their average values.

Take-Home Messages

(i) Because the spread is almost always locked to one tick, the price
dynamics of large-tick stocks boils down to describing the dynamics
of the best bid- and ask-queues. Price changes occur when a queue
empties (“wins the race”).

(ii) When a queue empties, either the volume bounces back and the race
continues without a change in price, or an order of opposite type fills
the hole and a new race begins around the new mid-price, with the
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previous second-best queue on the opposite side becoming the new
best queue.

(iii) In an LOB, the imbalance between the lengths of the bid- and
ask-queues is a strong predictor of the direction of the next price
change. The probability that the next price change is in the direction
of the shorter queue is a convex function of this queue imbalance.

(iv) By assuming that queues are diffusive, one can compute the theoret-
ical probability of a price change in a given direction as a function
of the queue imbalance. However, this approach leads to predicting
that this probability is a concave function of imbalance (or a linear
function if the bid and ask queue lengths are perfectly anti-correlated).

(v) In the case of long, self-stabilising and independent queues, the
probability of a price change in a given direction no longer depends
on the queue imbalance. Instead, the price moves up or down with
some fixed Poisson rate.

(vi) A more flexible modelling approach is to consider the joint dynamics
of the best queues in a Fokker–Planck framework that takes into
account the parameter dependence on each queue length.
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8

The Santa Fe Model for Limit Order Books

Done properly, computer simulation represents a kind of “telescope for the mind”,
multiplying human powers of analysis and insight just as a telescope does our
powers of vision. With simulations, we can discover relationships that the unaided
human mind, or even the human mind aided with the best mathematical analysis,
would never grasp.

(Mark Buchanan)

In this chapter, we generalise the single-queue model that we first encountered
in Chapter 5 to now account for the dynamics of all queues in an LOB. As
we will discuss, the resulting model is simple to formulate but quickly leads to
difficult mathematics. By implementing a wide range of mathematical techniques,
and also some simplifications, we illustrate how the model is able to account for
several important qualitative properties of real LOBs, such as the distribution of
the bid–ask spread and the shape of the volume profiles.

We also discuss how some of the model’s assumptions fail to account for
important empirical properties of real LOBs, such as the long-range correlations
in order flow that we discuss in Chapter 10, and we note that the model leads
to conditions that allow highly profitable market-making strategies, which would
easily be spotted, exploited and eliminated in real markets. We therefore argue
that more elaborate assumptions motivated by empirical observations must be
included in the description at a later stage. Still, considering the model in the
simple form that we study throughout this chapter has important benefits, including
understanding the mathematical frameworks necessary to address the many
interacting order flows and eliciting the degree of complexity of the corresponding
dynamics.

134
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8.1 The Challenges of Modelling LOBs

Despite the apparent simplicity of the rules that govern LOBs, building models that
are both tractable and useful has proven to be an extremely difficult task. We begin
this chapter by highlighting some of the challenges that make LOB modelling so
difficult.

8.1.1 State-Space Complexity

One key difficulty with modelling LOBs is that their set of possible states is so
large. Measured in units of the lot size υ0, the volume at each price level in an
LOB can take any integer value (positive for buys, negative for sells). Therefore,
if a given LOB offers NP different choices for price, then the state space of the
volume profile is (NP+1)NNP , since there are NP+1 different possible positions for
the mid-price separating buys from sells. In addition, the constraint that buy and
sell orders should not overlap introduces a non-linear coupling between the two
types of orders, thus forbidding the use of standard linear methods (see Chapter 19
for a model that explicitly accounts for this constraint).

This huge state space is an example of the so-called curse of dimensionality,
which affects the modelling and analysis of high-dimensional systems in many
different fields. The curse of dimensionality creates important difficulties for LOB
modelling: even given huge quantities of LOB data, the number of independent
data points that correspond to a specified LOB state is often very small. Therefore,
performing robust calibration of an LOB model from empirical data can be
extremely difficult unless the dependence on the state of the LOB is specified in a
parsimonious way. A key objective common to many LOB models is to find a way
to simplify the evolving, high-dimensional state space, while retaining an LOB’s
most important features.

8.1.2 Feedback and Control Loops

The state of an LOB clearly depends on the order flow generated by the market
participants trading within it. This order flow is not static but instead fluctuates
considerably through time. One key ingredient that drives the order flow generated
by the market participants – especially liquidity providers – is the state of the
LOB itself. Therefore, the temporal evolution of an LOB is governed by complex,
dynamic feedback and control loops between order flow and liquidity.

One example of such a dependency is illustrated by the flow lines in Figure 7.6,
which captures the influence of the relative volume at the best quotes on their
subsequent average evolution. Writing expressions that capture this feedback in a
general LOB model is a difficult task.
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Another key difficulty with many stylised LOB models is that they can end up
in a state in which the full LOB is completely depleted. By contrast, the feedback
and control loops in real markets tend to cause the LOB to replenish as the total
number of limit orders becomes small. This makes the probability of observing
a real LOB with no limit orders extremely small. However, this situation is not
impossible, because the stabilising feedback loops sometimes break down. Such
situations can lead to price jumps and flash crashes. This is a very important theme
that we will discuss in the very last chapter of this book, Chapter 22.

8.2 The Santa Fe Model

We now describe the LOB model that we will consider in this chapter, and that
will serve as the foundation for many of our subsequent discussions. In a nutshell,
the model generalises the single-queue model that we considered in Chapter 5 by
allowing orders to reside at any price on a discrete grid. We call this model the
Santa Fe model because it was initially proposed and developed by a group of
scientists then working at the Santa Fe Institute.1

Consider the continuous-time temporal evolution of a set of particles on a doubly
infinite, one-dimensional lattice with mesh size equal to one tick ϑ. Each location
on the lattice corresponds to a specified price level in the LOB. Each particle is
either of type A, which corresponds to a sell order, or of type B, which corresponds
to a buy order. Each particle corresponds to an order of a fixed size υ0, which
we can arbitrarily set to 1 (see Figure 8.1). Whenever two particles of opposite
type occupy the same point on the pricing grid, an annihilation A+ B→∅ occurs,
to represent the matching of a buy order and a sell order in L (t). Particles can
also evaporate, to represent the cancellation of an order by its owner. As above,
a(t) is the ask-price, defined by the position of the leftmost A particle, and b(t) is
the bid-price, defined by the position of the rightmost B particle. As always, the
mid-price is m(t) = (b(t)+ a(t))/2.

In this zero-intelligence model, order flows are assumed to be governed by the
following stochastic processes,2 where all orders have size υ0 = 1:

• At each price level p ≤m(t) (respectively p ≥m(t)), buy (respectively sell) limit
orders arrive as a Poisson process with rate λ, independently of p.

• Buy and sell market orders arrive as Poisson processes, each with rate μ.
• Each outstanding limit order is cancelled according to a Poisson process with

rate ν.
• All event types are mutually independent.

1 This group of scientists, led by J. D. Farmer, published several papers on their model throughout the early
2000s; see Section 8.9 for detailed references.

2 In this chapter, we will only consider the symmetric case where buy and sell orders have the same rates. The
model can be extended by allowing different rate parameters on the buy and sell sides of the LOB.
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Figure 8.1. (Top) An LOB L (t) at some moment in time, and (bottom) its
corresponding representation as a system of particles on a one-dimensional
pricing lattice.

The limit order rule means that the mid-price m(t) is the reference price around
which the order flow organises. Whenever a buy (respectively, sell) market order
x arrives, it annihilates a sell limit order at the price a(tx) (respectively, buy limit
order at the price b(tx)), and thereby causes a transaction. The interacting flows
of market order arrivals, limit order arrivals, and limit order cancellations together
fully specify the temporal evolution of L (t).

When restricted to the queues at the bid- and ask-prices, this model is exactly
equivalent to the linear model described by Equation 7.2, with a total cancellation
rate that is proportional to Vζ with ζ = 1. The model is also the same at all other
prices, but without the possibility of a market order arrival (so μ = 0 at all prices
except for the best quotes).

8.3 Basic Intuitions

Before investigating the model in detail, we first appeal to intuition to discuss
three of its more straightforward properties. First, each of the parameters λ, μ and
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ν are rate parameters, with units of inverse time. Therefore, in order for the units to
cancel out correctly, any observable quantity related to the equilibrium distribution
of volumes, spreads or gaps between filled prices can only depend on ratios of λ,
μ and ν. This is indeed the case for the formulae that we describe in the remainder
of this section.

Second, the approximate distributions of queue sizes can be derived by
considering the interactions of the different types of order flows at different prices.
Because market order arrivals only influence activity at the best quotes, and
because queues do not interact with one another, it follows that very deep into the
LOB, the distribution of queue sizes reaches a stationary state that is independent
of the distance from m(t). For V ∈ N (where V is in units of the lot size υ0), this
distribution is given by Equation (5.35) with μ = 0:

Pst.(V) = e−V∗ V
∗V

V!
, V∗ =

λ

ν
. (8.1)

Two extreme cases are possible:

• A sparse LOB, corresponding to V∗ � 1, where most price levels are empty
while the others are only weakly populated. This case corresponds to the
behaviour of the LOB for very small-tick assets.

• A dense LOB, corresponding to V∗ 	 1, where all price levels are populated
with a large number of orders. This corresponds to the behaviour of the LOB for
large-tick assets (at least close enough to the mid-price so that the assumption
that λ is constant is reasonable).

In real LOBs, λ decreases quite steeply with increasing distance from m(t) (see
Figure 4.5). Therefore, even in the case of large-tick stocks, we expect a crossover
between a densely populated LOB close to the best quotes and a sparse LOB far
away from them.3

The distribution in Equation (8.1) does not hold for prices close to m(t). If d
denotes the distance between a given price and m(t), then for smaller values of
d, it becomes increasingly likely that a given price was actually the best price
in the recent past. Correspondingly, limit orders are depleted not only due to
cancellations but also due to market orders that have hit that queue. Heuristically,
one expects that for λ > μ, the average size of the queues at a distance d from the
mid-price is given by

V∗ ≈ λ−μφeff(d)
ν

,

where φeff(d) is the fraction of time during which the corresponding price level was
the best quote in the recent past (of duration ν−1, beyond which all memory is lost).

3 This does not, however, imply that there are no buyers or sellers who wish to trade at prices far away from
the current mid-price. As we will argue in Chapter 18, most of the corresponding liquidity is latent, and only
becomes revealed as m(t) changes.
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This formula interpolates between Equation (5.46) for d = 0 and Equation (8.1)
for d large and says that queues tend to be smaller on average in the immediate
vicinity of the mid-price, simply because the market order flow plays a greater
role in removing outstanding limit orders. One therefore expects that the average
depth profile is an increasing function of d, at least close to d = 0 (where the
limit order arrival rate can be considered as a constant). This is indeed what we
observed in empirical data of LOB volume profiles (see Section 4.7). We discuss a
simple formula that describes the approximate shape of an LOB’s volume profile
in Section 8.7, which confirms the above intuition.

Next, we consider the size of the spread s(t). For large-tick stocks, the bid- and
ask-queues will both typically be long and s(t) will spend most of the time equal
to its smallest possible value of one tick, s(t) = ϑ. For small-tick stocks, for which
V∗ � 1, the spread may become larger. Introducing the notation ŝ for the spread
(measured in ticks), the probability per unit time that a new limit order (either buy
or sell) arrives inside the spread can be estimated as (̂s− 1)λ. The probability per
unit time that an order at one of the best quotes is removed by cancellation or by
an incoming market order is given by 2(μ+ ν), since the most probable volume at
the bid or at the ask is V = 1. The equilibrium spread size is such that these two
effects compensate,

seq. ≈ ϑ
[
1+ 2

μ+ ν

λ

]
.

Although hand-waving, this argument gives a good first approximation of the
average spread. Indeed, the simple result that a large rate μ of market orders opens
up the spread sounds reasonable. We will return to a more precise discussion of
spread sizes in Section 8.6.3.

8.4 Parameter Estimation

We now turn to the task of fitting the Sante Fe model to empirical data. At
first sight, it appears that estimating most of the model’s parameters should be
extremely straightforward. However, one of the model’s simplifying assumptions
causes a considerable difficulty for model fitting. Specifically, the model assumes
that the values of λ and ν do not vary with increasing distance from the best
quotes. Estimating the (assumed constant) limit order arrival rate in the model
requires dividing the total size of all limit order arrivals by the width of the
price interval studied. However, this assumption is at odds with empirical data
(see Section 4.4), because the rate of limit order arrivals tends to decrease with
increasing d. Therefore, if this simplistic method is used to estimate λ from real
data, then the resulting estimate of λ decreases with increasing width of the price
interval studied.
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One simple way to address this problem is to estimate λ only from the limit
orders that arrive reasonably close to the current mid-price. In our implementations
of the Santa Fe model, we choose to restrict our estimation of λ to the set XLO of
limit orders that arrive either at the best quotes or within the spread. We similarly
write XC to denote the set of order cancellations that occur at the best quotes. We
write XMO to denote the set of market orders (which, by definition, occur at the
best quotes). We write NLO, NC and NMO to denote, respectively, the number of
limit order arrivals at the best quotes, cancellations at the best quotes, and market
order arrivals, within a certain time window. We perform all counts independently
of the corresponding order signs (recall that we assume symmetry between buy
and sell activities).

We estimate the model’s parameters as follows:

• To estimate the order size υ0, we calculate the mean size of arriving limit orders

υ0 =
1

NLO

∑
x∈XLO

υx, (8.2)

where υx is the size of order x. Using the mean size of arriving market orders
produces qualitatively similar results.

• To estimate the total (buy + sell) market order arrival rate per event, 2μ̃, we
calculate the total size of arriving market orders (buy or sell), expressed in units
of υ0 and excluding hidden-order execution volume, then divide by the total
number of events:

2μ̃ =
1

NMO +NLO +NC

∑
x∈XMO

(υx/υ0) . (8.3)

• To estimate the total limit order arrival rate per event, 2λ̃all, we simply divide the
total number of limit orders by the total number of events:

2λ̃all =
NLO

NMO +NLO +NC
≡ 1

NMO +NLO +NC

∑
x∈XLO

(υx/υ0) . (8.4)

The limit order arrival rate in the Santa Fe model is a rate per unit price, so
to estimate λ̃, we divide λ̃all by the mean number n of available price levels
inside the spread and at the best quotes, measured only at the times of limit
order arrivals:

λ̃ =
λ̃all

n
, (8.5)

with

n := 2

(
1+

〈
� ŝ
2
� | event=LO

〉)
,
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Table 8.1. Estimated values of υ0, μ̃, ν̃ and λ̃ for each of the ten stocks
in our sample. We also give the average volume at the best quotes, and
the spread 〈s〉 for each stock, sampled uniformly in time.

λ̃ ν̃ μ̃ υ0 [shares] V̄/υ0 〈s〉 [ticks]

SIRI 0.236 0.0041 0.013 2387 114.9 1.08
INTC 0.222 0.012 0.019 328 36.4 1.17
CSCO 0.229 0.012 0.014 545 38.1 1.14
MSFT 0.220 0.013 0.022 238 36.1 1.18
EBAY 0.208 0.022 0.029 168 23.4 1.21
FB 0.169 0.041 0.031 140 13.0 1.48
TSLA 0.023 0.109 0.062 103 3.1 21.4
AMZN 0.018 0.107 0.055 92 3.1 32.6
GOOG 0.014 0.118 0.049 84 3.0 39.2
PCLN 0.0037 0.132 0.033 68 2.8 156.7

where �x� means the integer part of x. This value of n takes into account the fact
that both buy and sell limit orders can fill the mid-price level when the spread
(in ticks) is an even number.

• To estimate the total cancellation rate per unit volume and per event, 2ν̃, we
proceed similarly and write:

2ν̃ =
1

NMO +NLO +NC

∑
x∈XC

υx

V̄
; V̄ :=

V̄a + V̄b

2
. (8.6)

Note that the above estimation procedures all lead to “rates per event” rather than
“rates per unit time”. In other words, we have not determined the continuous-time
values of μ, ν, and λ, but rather the ratios μ/(μ+ν+λ), ν/(μ+ν+λ) and λ/(μ+ν+λ).
However, for the statistical properties of the LOB, these ratios are the important
quantities. The only effect of considering their overall scale is to “play the movie”
of order arrivals and cancellations at different speeds.

Table 8.1 lists the estimates of υ0, μ̃, ν̃ and λ̃ for each stock in our sample.

8.5 Model Simulations

As we have already emphasised, deriving analytical results about the behaviour of
the Santa Fe model is deceptively difficult. By contrast, simulating the model is
relatively straightforward. Before we turn our attention to an analytical study of
the model, we therefore perform a simulation study. Specifically, we estimate the
model’s input parameters from empirical data, then measure several of the model’s
outputs and compare them to the corresponding properties of the same data.
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The Santa Fe model is extremely rich, so many output observables can be
studied in this way. We consider the following four topics:

(i) the mean and distribution of the bid–ask spread;
(ii) the ratio between the mean first gap behind the best quote (i.e. the price

difference between the best and second-best quotes) and the mean spread;
(iii) the volatility and signature plot of the mid-price;
(iv) the mean impact of a market order and the mean profit of market-making.

When simulating the Santa Fe model there is a trade-off between computation
time and unwanted finite-size effects, induced by an artificially truncated LOB
beyond some distance from the mid-price. A suitable choice is a system of size
at least ten times larger than the average spread, which allows the system to
equilibrate relatively quickly. We choose the initial state of the LOB such that each
price level is occupied by exactly one limit order. Because small-tick LOBs exhibit
gaps between occupied price levels, and because each price level in large-tick
LOBs is typically occupied by multiple limit orders, this initial condition in
fact corresponds to a rare out-of-equilibrium state whose evolution allows one to
track the equilibration process. Once the system is in equilibrium, the standard
event-time averages of the quantities listed at the start of this section can be
computed from the synthetic Santa Fe time series, and then compared to empirical
data.4

We will see in the following sections that the model does a good job of capturing
some of these properties, but a less good job at capturing others, due to the
many simplifying assumptions that it makes. For example, the model makes good
predictions of the mean bid–ask spreads, but it predicts volatility to be too small
for large-tick stocks and too large for small-tick stocks. Moreover, the model
creates profitable opportunities for market-making strategies that do not exist in
real markets. These weaknesses of the model provide insight into how it might
be improved by including either some additional effects such as the long-range
correlations of order flow (which we discuss in Chapter 10) or some simple
strategic behaviours from market participants.

8.5.1 The Bid–Ask Spread

Figure 8.2 shows the empirical mean bid–ask spread versus the mean bid–ask
spread generated by simulating the Santa Fe model with its parameters estimated
from the same data, for each of the ten stocks in our sample. As the plot
illustrates, the model fares quite well, but slightly underestimates the mean bid–ask
spread for all of the stocks. This could be a simple consequence of our specific
parameter estimation method (see Section 8.4), which only considers the arrivals

4 Recall that throughout this chapter event-time refers to all events occurring at the best quotes.
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Figure 8.2. Empirical observations versus Sante Fe model predictions of the
mean bid–ask spread, measured in units of the tick size, using the rate parameters
in Table 8.1. The dashed line indicates the diagonal. The model does a good job
at predicting the mean spread for all stocks in our sample.

and cancellations of limit orders that occur at the best quotes or inside the spread,
and therefore likely causes us to overestimate the value of the limit order arrival
rate.5

In any case, considering only the mean does not provide insight into whether
the model does a good job at capturing the full distribution of the bid–ask spread.
This full distribution is particularly interesting for small-tick stocks, for which the
bid–ask spread can (and often does) take any of a wide range of different values.
Figure 8.3 shows the distribution of the bid–ask spread for three small-tick stocks
in our sample (i.e. PCLN, AMZN, TSLA), together with the corresponding results
from the Santa Fe model, rescaled in such a way that the mean spread coincides in
all cases. Once rescaled properly, the model does in fact reproduce quite well the
bid–ask spread distribution.

8.5.2 The Gap-to-Spread Ratio

We now consider the mean gap between the second-best quote and the best quote,
compared to the mean spread itself. We call this ratio the gap-to-spread ratio.
The gap-to-spread ratio is interesting since it is to a large extent insensitive to the
problem of calibrating λ correctly and of reproducing the mean bid–ask spread
exactly. It is also important because this gap determines the impact of large market
orders (see Equation (8.8) below).

Figure 8.4 shows the empirical gap-to-spread ratio versus the gap-to-spread ratio
generated by simulating the Santa Fe model, for the same ten stocks. For large-tick

5 Recall that the Santa Fe model also assumes that limit orders and market orders all have the same size.
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Figure 8.3. Distribution of the rescaled bid–ask spread for (left panel) TSLA and
(right panel) PCLN. The markers denote the empirical values and the dashed
lines denote the predictions from the Santa Fe model. The model’s predictions
are remarkably accurate.
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Figure 8.4. Empirical ratio of the gap between the best and second-best quote to
the spread, versus the corresponding values predicted from the Santa Fe model,
using the rate parameters in Table 8.1. The dashed line denotes the diagonal.

stocks, the model predicts that both the spread and the gap between the second-best
and best quotes are nearly always equal to one tick, so the ratio is simply equal to
1. In reality, however, the situation is more subtle. The bid–ask spread actually
widens more frequently than the Santa Fe model predicts, such that the empirical
gap-to-spread ratio is in fact in the range 0.8–0.95. This discrepancy becomes even
more pronounced for small-tick stocks, for which the empirical gap-to-spread ratio
typically takes values around 0.2, but for which the Santa Fe model predicts a
gap-to-spread ratio as high as 0.4. In other words, when the spread is large, the
second-best price tends to be much closer to the best quote in reality than it is in
the model.
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This analysis of the gap-to-spread ratio reveals that the Santa Fe model is
missing an important ingredient. When the spread is large, real liquidity providers
tend to place new limit orders inside the spread, but still close to the best quotes,
and thereby typically only improve the quote price by one tick at a time. This leads
to gaps between the best and second-best quotes that are much smaller than those
predicted by the assumption of uniform arrivals of limit orders at all prices beyond
the mid-price. One could indeed modify the Santa Fe specification to account for
this empirically observed phenomenon of smaller gaps for limit orders that arrive
inside the spread, but doing so comes at the expense of adding extra parameters.6

8.5.3 Volatility

Simulating the Santa Fe model reveals that the signature plot σ(τ)/
√
τ (see

Section 2.1.4) exhibits a typical mean-reversion pattern, in particular when both
the cancellation rate ν and the average size of the best queues V∗ ≈ (λ− μ)/ν are
small (see Figure 8.5).

Clearly, when ν is large, the memory of the LOB is completely erased after a
short time ν−1, beyond which the model has Markovian dynamics and the price
is diffusive. Suppose now that ν is small and V∗ is large, and that both queues
are initially in equilibrium, with comparable volumes of order V∗. The first-hitting
time T1 after which one of the best queues depletes (and the mid-price changes)
then grows exponentially with V∗ (see Equation (5.47)). If the bid (say) manages
to deplete, the empty level just created can refill with either a buy limit order or
a sell limit order with equal probability. However, these two situations are not
exactly symmetrical: if the new limit order is a buy, then the position of the old
bid is restored, facing again the same ask-queue as before, with volume of order
V∗. If however the new limit order is a sell, then the incipient ask-queue faces the
previous second-best bid, which was previously shielded from the flow of market
orders and is therefore typically longer than the best queues.

In other words, the initial volume imbalance I is more favourable to the old bid
than to the new ask, leading to some mean reversion. The relative difference in
volume imbalance is of order μ/λ, because of the shielding effect. Therefore, the
effect is small unless μ is comparable to or greater than λ, in which case the LOB
is sparse and V∗ small (see Section 8.6). In this case, mean-reversion effects can
be substantial (see Figure 8.5). In the other limit when ν is small and V∗ large,
the volatility of the mid-price is very small (because the depletion time T1 grows
exponentially with V∗, leading to very infrequent price changes) and the signature
plot is nearly flat.

We can now turn to a comparison of the Santa Fe model’s prediction about
volatility with the empirical volatility of our pool of stocks. First, from the results

6 On this point, see Mike, S., & Farmer, J. D. (2008). An empirical behavioral model of liquidity and volatility.
Journal of Economic Dynamics and Control, 32, 200–234.
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in Table 8.1, we can see that large-tick stocks are in a regime where V∗ is
much larger than 1. From the discussion above, we understand that the volatility
predicted by the Santa Fe model is very small, and grossly underestimates the
empirical volatility (see Figure 8.6). In reality, these extremely long depletion
times are tempered, partly because the assumption of a constant cancellation rate
per order is inadequate, as discussed in Sections 6.5 and 7.3.3.

For small-tick stocks, the model predicts values of volatility higher than those
observed empirically (see Figure 8.6). The main reason for this weakness is the
absence of a mechanism that accurately describes how order flows adapt when
prices change. In the model, once the best quote has disappeared, the order flow
immediately adapts around the new mid-price, irrespective of whether the price
change was caused by a cancellation, a market order arrival or a limit order arrival
inside the spread. In the language of Chapter 11, the permanent impact of all of
these events is identical, whereas in reality the permanent impact of a market order
arrival is much larger than that of cancellations.7 This causes volatility in the Santa
Fe model to be higher than the volatility observed empirically for small-tick stocks.

8.5.4 Impact of Market Orders and Market-Making Profitability

We now analyse in more detail the lag-dependent impact of market orders in the
Santa Fe model. We define this lag-τ impact as

R(τ) := 〈εt · (mt+τ −mt)〉t, (8.7)

7 On this point, see Eisler, Z., Bouchaud, J. P., & Kockelkoren, J. (2012). The price impact of order book events:
Market orders, limit orders and cancellations. Quantitative Finance, 12(9), 1395–1419.
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volatility of 10−12 and is not plotted here. The model overestimates the observed
volatility of (rightmost points) small-tick stocks and grossly underestimates the
observed volatility of (leftmost points) large-tick stocks. The dashed line denotes
the diagonal.

where εt denotes the sign of the market order at event-time t, where t increases by
one unit for each market order arrival. As we will discuss in Chapter 11, in real
markets the impact function R(τ) is positive and grows with τ before saturating for
large τ. In the Santa Fe model, however, R(τ) is constant, independent of τ, when
mean-reversion effects are small (as discussed in the previous section). The lag-τ
impact is then well approximated by:

R(τ) ≈ P(Vbest = 1)× 1
2
〈
first gap

〉
, (8.8)

where P(Vbest = 1) is the probability that the best queue is of length 1. This
approximation holds because a market order of size 1 impacts the price if and only
if it completely consumes the volume at the opposite-side best quote, and if it does
so, it moves that quote by the size of the first gap, and thus moves the mid-price
by half this amount. Since order flow in the Santa Fe model is uncorrelated and
is always centred around the current mid-price, the impact of a market order is
instantaneous and permanent. Therefore, the model predicts thatR(τ) is constant in
τ for small-tick stocks. In real markets, by contrast, the signs of market orders show
strong positive autocorrelation (see Chapter 10), which causes R(τ) to increase
with τ.

This simple observation has an important consequence: the Santa Fe model
specification leads to profitable market-making strategies, even when the
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Figure 8.7. Illustration of the kinematics of the model.

signature plot is flat (i.e. when prices are diffusive). In Section 1.3.2, we argued
that market-making is profitable on average if the mean bid–ask spread is larger
than twice the long-term impact R∞. In the Santa Fe model, the mean first gap
is always smaller than the bid–ask spread. Therefore, from Equation (8.8), one
necessarily has R∞ < 〈s〉/2, so market-making is easy within this framework. If
we want to avoid the existence of such opportunities, which are absent in real
markets, we need to find a way to extend the Santa Fe model. One possible
route for doing so is incorporating some strategic behaviour into the model,
such as introducing agents that specifically seek out and capitalise on any simple
market-making opportunities that arise. Another route is to modify the model’s
assumptions regarding order flow to better reflect the empirical properties observed
in real markets. For example, introducing the empirically observed autocorrelation
of market order signs would increase the long-term impact R∞ and thereby reduce
the profitability of market-making.

8.6 Some Analytical Results
In this section, we turn our attention to deriving some analytical results from the
Santa Fe model. Despite the simplicity of its modelling assumptions, analytical
treatment of the full model (as specified in Section 8.2) is extremely difficult.
However, as we will see throughout this section, if we adopt the assumption that
the sizes of gaps in the LOB are independent, then it is possible to derive several
interesting results from the model, such as the distribution of the bid–ask spread. The
methods that we use to obtain these results are also interesting in their own right, and
are useful in many other contexts.

Throughout this section, we use the index i to label the different intervals (i.e. gaps
between successive prices at which limit orders reside) in the LOB. We use positive
indices to label these gaps on the sell-side, negative indices to label these gaps on the
buy-side, and the index i = 0 to label the bid–ask spread (see Figure 8.7).

We write �i to denote the size of gap i. Due to the finite tick size in an LOB (see
Section 3.1.5), the �i must always take values

�i ∈ {0,ϑ,2ϑ, . . . } , i = . . . ,−2,−1,0,1,2, . . . .

We write Pi(�) to denote the probability distribution of �i. The value �i = 0
corresponds to the case where the distance between the ith and (i + 1)th occupied
prices is exactly one tick (i.e. there is no gap in the LOB). In this notation, we can
express the bid–ask spread as s = �0 +ϑ and the ith gap as �i +ϑ. In the following, we
will set ϑ = 1, such that all gap sizes are measured in tick units.

As we mentioned at the start of this section, we will assume that all of the �i are
independent random variables. Under this assumption, it is possible to write an exact
recursion equation for the Pi, by the following argument. Due to the nature of order
flow in the model, each queue in the LOB disappears (i.e. depletes to 0) with a certain
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Poisson rate (see Section 5.4.3). Let γi denote this Poisson rate of disappearing for
the ith level. We also introduce a corresponding variable λi to denote the rate per unit
time and per unit length that a new limit order falls in the ith interval. In the Santa
Fe model, λi is simply a constant equal to λ for all i. In this section, we consider a
slight extension, where λi can be arbitrary, for example λi = λ for all i� 0, but with λ0

possibly different, to reflect that the arrival rate of limit orders inside the spread can
differ considerably from the arrival rate of limit orders at other prices in the LOB.

We now consider the temporal evolution of the gap sizes. For concreteness, we
discuss an interval i ≥ 1 (i.e. on the sell-side of the LOB); similar arguments hold by
symmetry for the buy-side of the LOB (the case i = 0 is treated separately). Several
different events can contribute in changing the gap size �i between t and t+ dt:

(i) With probability λidt × �i, a new sell limit order arrives inside the ith gap and
cuts it into two intervals of size �′i and �′i+1, such that �′i + �

′
i+1 + 1 = �i (one tick

is now occupied with the new limit order). The size of the ith gap is �′i . In the
Santa Fe model, limit order arrivals occur at a uniform rate at all prices in the
gap, so �′i is uniformly distributed between 0 and �i − 1.

(ii) With probability λi−1dt× �i−1, a new sell limit order arrives inside the i−1th gap
and cuts it into two intervals of size �′i−1 and �′i , such that �′i−1 + �

′
i +1 = �i−1. The

new size of the ith gap is �′i , which is again uniformly distributed between 0 and
�i−1 − 1.

(iii) With probability dt×∑i−2
j=0 λ j� j, a new sell limit order arrives inside any interval

to the left of i− 1, and thereby increases the label of i by one, such that the new
�i is equal to the old �i−1.

(iv) With probability γi+1dt, the right boundary level of the ith gap disappears, which
causes �i to increase to 1+ �i+1.

(v) With probability
∑i

j=1 γ jdt, one of the queues to the left of interval i disappears,
which causes the old i+1th interval to become the new ith interval, such that the
new �i is equal to the old �i+1.

8.6.1 The Master Equation
Assuming that all �i are independent, the above enumeration of all possible events
enables us to write an evolution equation for the marginal distributions Pi(�). Let

�̄i =

∞∑
�=0

�Pi(�) (8.9)

denote the mean of �i. Removing the explicit t-dependence of the Pi (to simplify the
notation), one has:

∂Pi(�)
∂t
= −λi�iPi(�)+λi

∞∑
�′=�+1

Pi(�
′)+λi−1

∞∑
�′=�+1

Pi−1(�′)

+ γi+1

�−1∑
�′=0

Pi(�
′)Pi+1(�− �′ − 1)

−
⎛⎜⎜⎜⎜⎜⎜⎝ i+1∑

j=1

γ j +

i−1∑
j=0

λ j�̄ j

⎞⎟⎟⎟⎟⎟⎟⎠Pi(�)+
i∑

j=1

γ jPi+1(�)+
i−2∑
j=0

λ j�̄ jPi−1(�)

(8.10)

for all i ≥ 1.
This equation looks extremely complicated, but is actually relatively friendly in

Laplace space. Introducing

P̂i(z) :=
∞∑
�=0

e−z� Pi(�),
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we arrive (after some simple manipulations) at

∂P̂i(z)
∂t
= λi P̂

′
i (z))+

1
1− e−z

(
λi(1− P̂i(z))+λi−1(1− P̂i−1(z))

)
+ γi+1e−zP̂i(z)P̂i+1(z)

−
⎛⎜⎜⎜⎜⎜⎜⎝ i+1∑

j=1

γ j +

i−1∑
j=0

λ j�̄ j

⎞⎟⎟⎟⎟⎟⎟⎠ P̂i(z)+
i∑

j=1

γ j P̂i+1(z)+
i−2∑
j=0

λ j�̄ j P̂i−1(z),

(8.11)
where P̂′(z) is the derivative of P̂(z) with respect to z.

If we consider the case i = 0, we can write the equation for the distribution of the
bid–ask spread. Recalling that in the Santa Fe model, order flow is symmetric on the
buy and sell-sides of the LOB, and noting that both buy and sell limit and market
orders can influence the bid–ask spread, we see that:

∂P̂0(z)
∂t

= λ0P̂′0(z)+
λ0

1− e−z

(
1− P̂0(z)

)
+ 2γ1e−zP̂0(z)P̂1(z)− 2γ1P̂0(z). (8.12)

In the following we will consider the case where λ|i|≥1 := λ, as assumed in the
original version of the model. We will determine the stationary solutions such that
the left-hand side of Equations (8.11) and (8.12) are zero, both deep in the book and
for the bid–ask spread.

8.6.2 The “Deep” Solution

Deep inside the LOB (i.e. when i	 1), one expects that γi → γ∗ and that P̂i(z)→
Q∗(z). Plugging this into Equation (8.11), one finds:

0 = λQ∗′(z)+
2λ

1− e−z
(1−Q∗(z))+ γe−zQ∗2(z)− (γ∗ +λ�̄∗)Q∗(z), (8.13)

where �̄∗ is the mean gap length in the limit i → ∞. This non-linear, ordinary
differential equation admits the following solution:

Q∗(z) =
1

1+ �̄∗(1− e−z)
, with �̄∗ =

γ∗

λ
. (8.14)

This corresponds to a geometric distribution

P∗(�) =
1
�∗

(
1− 1

�∗

)�
(8.15)

for the gap size �, with a mean interval length equal to γ/λ.
The value of γ can be calculated from the single-queue problem that we considered

in Chapter 5. At queues deep in the LOB, one can neglect the influence of the market
orders and set μ = 0. Equation (5.35) then leads to the stationary distribution of the
volume at each occupied price:

Pst.(V) =
1

eλ/ν − 1

(
λ
ν

)V

V!
, for V ≥ 0.

The rate γ∗ at which an occupied price becomes unoccupied (i.e. the total volume at
the given price depletes to 0) is given by

γ∗ = νPst.(V = 1),

=
λ

eλ/ν − 1
,
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which finally leads to

�̄∗ =
γ∗

λ
=

1
eλ/ν − 1

.

In the limit ν	 λ (i.e. where the cancellation rate is much higher than the deposition
rate, so the LOB is sparse, as typically occurs for small-tick stocks) the mean gap size
is very large, of order ν/λ. In the limit ν� λ (i.e. where the deposition rate is much
higher than the cancellation rate, so the LOB is densely populated, as typically occurs
for large-tick stocks), the mean gap size is very small, because the gaps are equal to
zero most of the time, and are rarely equal to one tick (and even more rarely equal
to two ticks, etc.). Although these two regimes lead to very different LOB states, the
gap distribution is always a geometric distribution.

8.6.3 The Bid–Ask Spread
We now consider Equation (8.12) in the stationary limit, for which

λ0Q′0(z)+
λ0

1− e−z

(
1− P̂0(z)

)
+ 2γ1e−zP̂0(z)P̂1(z)− 2γ1P̂0(z) = 0. (8.16)

Let us first assume that the tick size is very large, such that all gaps with |i| ≥ 1 have
a very small mean length �̄i� 1. As a first approximation, we can assume P̂1(z) ≈ 1,
and thus simplify Equation (8.16) to yield

P̂0(z) ≈ 1+ (ez − 1)
∫ ∞

z
dz′

e−d0(z′−z+ez′ −ez) − 1

4sinh2(z′/2)
; d0 =

2γ1

λ0
.

Taking the limit z→ 0 of the above integral leads to a general expression for the mean

bid–ask spread. Two limiting cases are interesting:

• If d0� 1 (which corresponds to an intense in-flow of limit orders), then the mean
spread is close to one tick, and the mean gap size is given by

�̄0 ≈ d0� 1.

In this case, the probability that the spread is equal to exactly one tick is given by
(1+ d0)−1.

• If d0 	 1 (which corresponds to the case where the market order rate μ is large
compared to the flow of limit orders inside the spread), then

�̄0 ≈ 1.6449 . . .d0.

This is a strange (but possible) case, since we still assume that the first gap behind
the best quote is nearly always equal to zero, while the spread itself is very large.

In the limit where all gaps are large (as typically occurs for small-tick stocks), the
relevant range of z values is z� 1, which corresponds to the continuum limit of the
model. In this case, Equation (8.16) can be solved to produce

P̂0(z) = 1− d0z
∫ ∞

z
dz′

1− P̂1(z′)
z′

e−d0
∫ z′
z dz′′(1−P̂1(z′′)). (8.17)

Writing P̂0(z→ 0) ≈ 1− z�̄0, one finds

�̄0 = d0

∫ ∞

0
dz′

1− P̂1(z′)
z′

e−d0
∫ z′
0 dz′′(1−P̂1(z′′)).
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In the limit d0	 1, this leads to an interesting, universal result that is independent of
the precise shape of P̂1(z). Due to the rapid decay of the exponential term, it follows
that z′ must remain small, so that the result reads

�̄0 ≈ d0�̄1

∫ ∞

0
dz′e−

d0
2 z′2 �̄1 =

√
π

2
×

√
d0�̄1. (8.18)

By introducing a scaled variable u = s�̄0, one can in fact analyse the full equation for
P̂0(z) in the regime d0	 1. In this case, Equation (8.17) leads to the result

P̂0(u) = 1− ueu2/2

∫ ∞

u
du′e−u′2/2.

The Laplace transform can be inverted and leads to the following distribution for
x = �0/�̄0:

P0(x) = xe−x2/2.

The case μ 	 ν 	 λ is also very interesting, because one can characterise the
distribution of gap sizes for all i to find an extended power-law regime:

�̄i ≈ 1
λ

√
μν

|i| ; 1� |i| � μ

ν
.

In particular, �̄1 ∼ √μν/λ. Therefore, using �̄1, Equation (8.18) and the approxima-
tion d0 ≈ μ/λ, we finally arrive at the scaling relation

�̄0 ∼ μ
3/4ν1/4

λ

for the mean bid–ask spread in this regime. Note that �̄i ∼ |i|−1/2 corresponds to a
linear volume profile, since

L =
Q∑

i=1

�̄i ∝
√

Q, (8.19)

which means that the integrated volume Q over a region of extension L away from the
mid-price grows like L2. The density of orders at distance L is therefore proportional
to L.

8.7 The Continuum, Diffusive-Price Limit

Another route to understanding the shape of the LOB is to assume that the tick size
is infinitesimal (ϑ→ 0) so that the mid-price takes continuous values. However,
working with the Santa Fe model under this assumption is difficult, because the
motion of the mid-price is itself dictated by the interaction between the order flow
and the instantaneous shape of the LOB. One possible way to make progress is to
artificially decouple the motion of the mid-price from the state of the LOB, and to
instead impose that it simply follows a random walk. As we noted in Section 8.5.3,
this assumption is only valid on time scales larger than ν−1, because substantial
mean-reversion is present on shorter time scales.

Following this approach provides the following path to an approximate
quantitative theory of the mean volume Vst.(d) at distance d from the mid-price.
Buy (respectively, sell) orders at distance d from the current mid-price at time t
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are those that were placed at a time t′ < t and have survived until time t. Between
times t′ and t, these orders:

(i) have not been cancelled; and
(ii) have not been crossed by the ask (respectively, bid) at any intermediate time

t′′, in the sense that the ask (respectively, bid) price has never been above
(respectively, below) the price of the orders since the time that they were
placed.

For the remainder of this section, we assume that the arrival rate of limit orders
at a given price p depends on the distance d between p and the mid-price m(t). Let
λ(d) denote the arrival rate of limit orders at a distance d from m(t).

Consider a sell limit order in the LOB at some given time t. This order appeared
in the LOB at some time t′ ≤ t, when its distance from the mid-price was d′ =
d + m(t) − m(t′). Therefore, its deposition occurred with some rate λ(d′). Using
conditions (i) and (ii) above, the mean volume profile in the limit t→∞ can be
written as:

Vst.(d) = lim
t→∞

∫ t

−∞
dt′

∫ ∞

−d
duλ (d+ u)P

[
u|t→ t′

]
e−ν(t−t′),

where P [u|t→ t′] is the conditional probability that the time-evolution of the price
produces a given value u = m(t) − m(t′) of the mid-price difference, given the
condition that the path satisfies8 d + m(t) − m(t′′) ≥ 0 at all intermediate times
t′′ ∈ [t′, t].

Evaluating P requires knowledge of the statistics of the price process, which we
assume to be purely diffusive, with some diffusion constant D. In this case, P can
be calculated using the standard method of images,9 to yield:

P
[
u|t→ t′

]
=

1√
2πDτ

[
exp

(
− u2

2Dτ

)
− exp

(
− (2d+ u)2

2Dτ

)]
,

where τ = t − t′. After a simple computation, one finds (up to a multiplicative
constant, which only affects the overall normalisation):

Vst.(d) = e−κd
∫ d

0
duλ(u) sinh(κu)+ sinh(κd)

∫ ∞

d
duλ(u)e−κu, (8.20)

where κ−1 =
√

D/2νmeasures the typical range of price changes during the lifetime
of an order ν−1.

8 We neglect here the size of the spread. The condition should in fact read d + b(t)− b(t′′) = d +m(t)−m(t′′)−
(s(t)− s(t′′))/2 ≥ 0, for all t′′ ∈ [t′, t].

9 See, e.g., Redner, S. (2001). A guide to first-passage processes. Cambridge University Press.
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Equation (8.20) depends on the statistics of the incoming limit order flow, which
is modelled by the deposition rate λ(d). Let us consider a simple case

λ(d) = e−αd

in which λ(d) decays exponentially in d. In this case, it is possible to evaluate the
integrals explicitly, to yield

Vst.(d) = V0

[
e−αd − e−κd

]
,

where V0 is some volume scale. In the original specification of the Santa Fe model,
λ(d) is constant in d. In this case, α = 0, so Vst.(d) = V0

[
1− e−κd

]
, which implies

that the mean volume increases monotonically with increasing d. This is at odds
with empirical observations of real LOBs, for which the mean volume profile first
increases but then decreases with increasing d.

For general values of α, it is clear from the expression of Vst.(d) that the mean
volume:

• decays to 0 (linearly) when d → 0. We will return to this important point in
Chapter 19;

• reaches a maximum at some distance d∗; and
• decays back to 0 (exponentially) for large d.

Although only approximate, this simple framework provides insight into why the
mean volume profile for small-tick stocks exhibits a universal hump shape (see
Section 4.7 and Figure 4.8). In particular, the liquidity tends to be small close to the
current mid-price. This will be a recurring theme in the following (see Chapter 18).

8.8 Conclusion: Weaknesses of the Santa Fe Model

The Santa Fe model makes many extreme assumptions that are clearly unrealistic.
Some are probably innocuous, at least for a first account of the dynamics of the
LOB, whereas others are more problematic, even at a qualitative level. To conclude
our discussion of the model, we list some of these unrealistic assumptions and
propose some possible cures.

(i) The model assumes that buy (respectively, sell) limit orders arrive at the same
rate at all prices p ≤m(t) (respectively, p ≥m(t)), whereas in real markets the
rates of limit order arrivals vary strongly with relative price (see Figure 4.5).
As we have seen in Section 8.7, allowing the arrival rate to vary as a function
of price can be incorporated in the model relatively easily, and improves the
model’s ability to reproduce the behaviour observed in real LOBs, like the
average volume profile.
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(ii) The model assumes that all sources of temporal randomness are governed
by Poisson processes with time-independent rates, whereas real order arrivals
and cancellations cluster strongly in time and follow intra-day patterns (see
Chapter 2). The problem of event clustering could be rectified by replacing
the Poisson processes by self-exciting processes, such as Hawkes processes
(see Chapter 9), and the problem of intra-day seasonalities can be eliminated
by working in event-time.

(iii) The model assumes that all order flows are independent of the current state
of the LOB and of previous order flow. However, as we have already seen for
the dynamics of the best queues in Chapter 7, order-flow rates clearly depend
both on the same-side and opposite-side best queues, and there is no reason
to expect that order-flow rates will not also depend on other characteristics
of the LOB. Two important dependencies can be accommodated relatively
straightforwardly within an extended Santa Fe model: (a) the volume of
incoming market orders tends to grow with the available volume and (b) the
probability that a market order hits the ask rather than the bid increases with
the volume imbalance I introduced in Section 7.2.

(iv) Perhaps even more importantly, the Santa Fe model assumes that all order
flows are independent of each other. This modelling assumption is deeply
flawed. As we will repeatedly emphasise in the coming chapters, there are
several strong, persistent correlations between order flows in an LOB. For
example, the signs of market orders are long-range autocorrelated.10 Market
order arrivals also tend to be followed by limit order arrivals that refill
the depleted queue, and vice-versa, in a tit-for-tat dance between liquidity
provision and consumption. This is important to produce a price that behaves
approximately as a martingale.

Despite these simplifications, the model incorporates all of the concrete rules
of trading via an LOB. Specifically, orders arrive and depart from the LOB
in continuous time (due to particle arrivals, evaporations and annihilations), at
discrete price levels (due to the discreteness of the pricing grid) and in discrete
quantities (due to the discreteness of each particle’s size). Whenever a particle
arrives at a price already occupied by another particle of opposite type, the
particles annihilate (which corresponds to the arrival of a market order). Hence,
although the Santa Fe model does not seek to incorporate all empirical properties
of order flow observed in real markets, it captures the essential mechanics of
trading via an LOB. Therefore, the model can be regarded as a simple null model
of price formation, without considering any strategic behaviour of the market
participants. Interestingly, the model allows one to reproduce many empirical

10 For models that include these long-range correlations, see: Mastromatteo, I., Tóth B., & Bouchaud, J-P. (2014).
Agent-based models for latent liquidity and concave price impact. Physical Review E, 89(4), 042805.
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quantities, such as the average or distribution of the bid–ask spread, with a
remarkable accuracy, vindicating the idea that for some observables the influence
of intelligence may be secondary to the influence of the simple rules governing
trade. More sophisticated ingredients, such as modelling optimised strategies of
market-makers/high-frequency traders or the fragmentation of large orders that
lead to correlated order flows, can be included at a later stage.

Take-Home Messages

(i) Modelling the full LOB is difficult because the state space is large
and investors’ actions are extremely complex.

(ii) The so-called zero-intelligence approach simplifies the problem by
assuming that investors’ actions follow stochastic processes. Though
oversimplified, this approach allows some empirical stylised facts
to be recovered. This shows that some regularities of markets may
simply be a consequence of their stochastic nature.

(iii) The Santa Fe model regards the LOB as a collection of queues that
evolve according to a constant limit order arrival rate, a constant
cancellation rate per existing limit order, and a constant market order
arrival rate at the best queues.

(iv) By estimating the empirical rates for each such events, the Santa
Fe model can be used to make predictions of several important
statistical properties of real markets.

(v) The model makes reasonably good predictions about the mean
bid–ask spread, and about the full distribution of the bid–ask spread.

(vi) The model makes reasonably good predictions about the increasing
mean volume profile near to the best quotes, but does not capture the
eventual decrease in mean volume deeper into the LOB.

(vii) The model slightly overestimates volatility for small-tick stocks, but
grossly underestimates volatility for large-tick stocks.

(viii) In the model, the mean impact of an order is smaller than the
half spread, creating profitable market-making opportunities. This
is because the zero-intelligence approach misses a crucial ingredient
of financial markets: feedback of prices on strategic behaviour.
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Bouchaud, J. P., Mézard, M., & Potters, M. (2002). Statistical properties of stock
order books: Empirical results and models. Quantitative Finance, 2(4), 251–256.



8.9 Further Reading 157

Zovko, I., & Farmer, J. D. (2002). The power of patience: A behavioural regularity
in limit-order placement. Quantitative Finance, 2(5), 387–392.

Weber, P., & Rosenow, B. (2005). Order book approach to price impact. Quantitative
Finance, 5(4), 357–364.

Mike, S., & Farmer, J. D. (2008). An empirical behavioral model of liquidity and
volatility. Journal of Economic Dynamics and Control, 32(1), 200–234.

Bouchaud, J. P., Farmer, J. D., & Lillo, F. (2009). How markets slowly digest changes
in supply and demand. In Hens, T. & Schenk-Hoppe, K. R. (Eds.), Handbook of
financial markets: Dynamics and evolution. North-Holland, Elsevier.

Eisler, Z., Bouchaud, J. P., & Kockelkoren, J. (2012). The price impact of order book
events: Market orders, limit orders and cancellations. Quantitative Finance, 12(9),
1395–1419.

Gould, M. D., Porter, M. A., Williams, S., McDonald, M., Fenn, D. J., & Howison,
S. D. (2013). Limit order books. Quantitative Finance, 13(11), 1709–1742.

Abergel, F., Chakraborti, A., Anane, M., Jedidi, A., & Toke, I. M. (2016). Limit order
books. Cambridge University Press.

The Santa Fe Model
Daniels, M. G., Farmer, J. D., Gillemot, L., Iori, G., & Smith, E. (2003). Quantitative

model of price diffusion and market friction based on trading as a mechanistic
random process. Physical Review Letters, 90(10), 108102.

Smith, E., Farmer, J. D., Gillemot, L. S., & Krishnamurthy, S. (2003). Statistical
theory of the continuous double auction. Quantitative Finance, 3(6), 481–514.

Farmer, J. D., Patelli, P., & Zovko, I. I. (2005). The predictive power of zero
intelligence in financial markets. Proceedings of the National Academy of Sciences
of the United States of America, 102(6), 2254–2259.

Agent-Based Models of LOBs
Bak, P., Paczuski, M., & Shubik, M. (1997). Price variations in a stock market with

many agents. Physica A: Statistical Mechanics and its Applications, 246(3–4),
430–453.

Chiarella, C., & Iori, G. (2002). A simulation analysis of the microstructure of double
auction markets. Quantitative Finance, 2(5), 346–353.

Challet, D., & Stinchcombe, R. (2003). Non-constant rates and over-diffusive prices
in a simple model of limit order markets. Quantitative Finance, 3(3), 155–162.

Preis, T., Golke, S., Paul, W., & Schneider, J. J. (2006). Multi-agent-based order book
model of financial markets. EPL (Europhysics Letters), 75(3), 510.

Chiarella, C., Iori, G., & Perello, J. (2009). The impact of heterogeneous trading
rules on the limit order book and order flows. Journal of Economic Dynamics and
Control, 33(3), 525–537.
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Introduction

So far, we have restricted our attention to models with simple statistical properties,
such as Brownian motions and time-homogeneous Poisson processes. These
models have assumed that all events are independent (once they are conditioned
on the current state of the world), and have produced simple, stationary outputs.

This picture is far from the truth, for at least two reasons. First, real order
flow exhibits complex feedback loops. As empirical measurements demonstrate, a
large fraction of market activity is generated endogenously, so assuming that order
flows are conditionally independent is clearly problematic. Whether stabilising
or destabilising, feedback loops in financial markets can (and do) fundamentally
change the resulting global behaviour. Second, order flows show long-range
autocorrelations, to the extent that future order flows are often highly predictable,
given observations of the past.

In this part, we introduce a collection of tools to model and understand the
complex dependencies between market events. As with the previous parts, we start
this discussion by using empirical evidence to address several important questions
on this topic. To what extent do past events influence future events? What part of
market activity is triggered by exogenous events, like the arrival of news? And
what part is triggered endogenously by past activity?

The first part of our discussion will focus on the important role played by
the time-clustering of events. We will introduce a flexible class of processes
called Hawkes processes, which are the continuous-time analogue of a discrete
ARCH process. As we will discuss, the Hawkes framework is a simple yet
powerful tool for estimating and modelling events that cluster in time. By fitting
Hawkes processes to LOB data, we will show that a large fraction of market
activity appears to be endogenous. This will help us to illustrate how clustering
might be responsible for the fat-tailed returns distributions that we discussed in
Section 2.2.1.

The second part of our discussion will focus on an important puzzle that we will
attempt to solve throughout the remaining parts of the book: the highly predictable
character of order-flow direction. Specifically, we will show that the sign of market
orders is strongly autocorrelated in time, such that observing a buy market order
now significantly increases the probability of observing another buy market
order far in the future.

This last point deserves detailed investigation. Where do such autocorrelations
come from? Do traders exhibit herding behaviour, such that they all buy or sell
aggressively at the same time? Or do these regularities emerge from the behaviour
of individual agents? As usual, we will use empirical data to settle the argument.
We will show that although herding behaviours exist, they are actually quite
weak. Instead, what really causes order-flow autocorrelations is the order-splitting
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behaviour of traders, who slice and dice so-called metaorders into many smaller
child orders, which they execute incrementally over time periods of days or even
weeks. Why do traders behave in this way? The answer lies in the ever-present
shortage of liquidity in financial markets. This concept, which we will discuss
extensively, will come to form one of the most important concepts of this book.
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9

Time Clustering and Hawkes Processes

In economics, there can never be a “theory of everything”. But I believe each
attempt comes closer to a proper understanding of how markets behave.

(Benoı̂t B. Mandelbrot)

When studying order flows in real markets, two striking phenomena are readily
apparent:

• Market activity follows clear intra-day patterns that are related to predictable
events, such as the start of a trading day, the end of a trading day, the opening of
another market, the slowdown around lunch time, and scheduled macroeconomic
news announcements. These intra-day patterns are clearly visible in Section 4.2.
Such patterns induce strong 24-hour periodicities in several important market
properties such as volatility (see, e.g., Figure 2.5). Other patterns also exist at
the weekly, monthly, and yearly levels.

• Even after accounting for these intra-day patterns, market events still strongly
cluster in time. Some periods have extremely high levels of market activity, with
seemingly random durations, such that the level of market activity is “bursty” or
“intermittent”. In fact, financial markets are one among many other examples of
intermittent processes, like neuronal activity or Barkhausen noise in disordered
magnets (see references in Section 9.7). A well-known case is seismic activity,
where one earthquake triggers aftershocks or even other major earthquakes
elsewhere on the planet.

Throughout the previous four chapters, one of the key assumptions was that order
flow can be described as a Poisson process with constant rate parameters. Although
this assumption provides a convenient framework for building simple models, it
clearly does not reflect these two important empirical facts.

In this chapter, we consider a class of models called Hawkes processes, which
capture these properties via two key mechanisms. First, to account for exogenous

This chapter is not essential to the main story of the book.
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intra-day patterns, they allow the Poissonian rate parameters to be explicitly
time-dependent. Second, they incorporate a “self-exciting” feature, such that
their local rate (or intensity) depends on the history of the process itself. As
we illustrate throughout the chapter, these two core components make Hawkes
processes powerful tools that strongly outperform homogeneous Poisson processes
for replicating the true order-flow dynamics observed in real markets.

9.1 Point Processes

Throughout this chapter, our main object of study will be stochastic processes that
create instantaneous temporal events. For i ∈ N, we write ti to denote the time
at which the ith event occurs. These events could be, for example, market order
arrivals, changes in the mid-price, or even any event that changes the state of the
LOB. The set of arrival times defines a point process (PP).

For a given point process (ti)i∈N, the inter-arrival times are defined as

δi = (ti+1 − ti), i = 0,1,2, . . . . (9.1)

Given a PP (ti)i∈N, the associated counting process

N(t) :=
∑
i∈N

1ti≤t (9.2)

counts the number of arrivals that have occurred up to (and including) time t, where
1ti≤t denotes the indicator function

1ti≤t :=

{
1, if ti ≤ t,
0, otherwise.

(9.3)

Intuitively, the counting process N(t) is an increasing step function with a
unit-sized jump discontinuity at each time ti.

For an infinitesimal time increment dt, we define the counting increment

dN(t) :=

{
1, if there exists an i such that t ≤ ti ≤ t+ dt,
0, otherwise.

(9.4)

9.1.1 Homogeneous Poisson Processes

A homogeneous Poisson process is a PP in which events occur independently of
each other and with a fixed intensity ϕ per unit time, such that the probability that
dN(t) = 1 in an infinitesimal time interval (t, t+ dt) is equal to ϕdt.

An important property of a homogeneous Poisson process is that the inter-arrival
times δi are independent random variables with an exponential distribution:

P[δi > τ] = P[N(ti + τ)−N(ti) = 0] = e−ϕτ, i = 0,1,2, . . . .
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Because the events are independent, the number of events that occur in an interval
(t, t+ τ) obeys a Poisson distribution:

P[N(t+ τ)−N(t) = n] =
(ϕτ)n

n!
e−ϕτ. (9.5)

By standard results for the Poisson distribution, the mean and variance of the
number of events that occur in an interval (t, t+ τ) are both equal to ϕτ:

E[N(t+ τ)−N(t)] = ϕτ, (9.6)

V[(N(t+ τ)−N(t)] = ϕτ. (9.7)

9.1.2 The Clustering Ratio

When studying PPs, the clustering ratio

r(τ) =
V[(N(t+ τ)−N(t)]
E[(N(t+ τ)−N(t)]

(9.8)

is a useful tool for understanding the temporal clustering of events:

• The value r = 1 (which, by Equations (9.6) and (9.7), is the case for a
homogeneous Poisson process) indicates that events do not cluster in time.

• Values r > 1 indicate that arrivals attract each other (so that many arrivals can
occur in the same interval), and therefore indicate the presence of clustering.

• Values r < 1 indicate that arrivals repel each other, and therefore indicate the
presence of inhibition (see Section 9.5).

As we will see below, events in financial time series are characterised by values
of r larger (and often much larger) than 1.

9.1.3 Inhomogeneous Poisson Processes

An inhomogeneous Poisson process is a Poisson PP with a time-dependent
intensity ϕ(t), which describes the instantaneous arrival rate of events at time t.
The intensity is defined as

ϕ(t) = E

[
dN(t)

dt

]
= lim

ε↓0
E

[
N(t+ ε)−N(t)

ε

]
. (9.9)

One simple application of an inhomogeneous Poisson process is to choose ϕ(t) as
a deterministic function that tracks the intra-day pattern of activity in financial
markets. Another possible application is to consider the intensity ϕ(t) to itself
be a random variable, with a certain mean ϕ0 and covariance V[ϕ(t)ϕ(t′)]: =
Cϕ(t, t′). This “doubly stochastic”1 point process is called a Cox process. Note

1 The random nature of the intensity adds to the Poisson randomness.
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that whenever Cϕ(t, t′) > 0 for t′ � t, it follows that the clustering ratio satisfies
r > 1, which indicates clustering.

9.2 Hawkes Processes

By allowing its rate parameter to vary as a function of time, an inhomogeneous
Poisson process can address the first of the two empirical properties of order-flow
series that we listed at the beginning of this chapter, namely predictable patterns.
However, to also account for the second property (i.e. self-excitation) will require
ϕ to depend not only on t, but on the past realisations of the process itself. This
idea forms the basis of the Hawkes process.

9.2.1 Motivation and Definition

The inspiration for Hawkes processes originates not from financial markets, but
from earthquake dynamics, where events seem to trigger other events, or replicas.
This causes a point process of arrival times of earthquakes to exhibit a self-exciting
structure, in which earthquakes are more likely to occur if other earthquakes have
also occurred recently. The same phenomenon also occurs in financial markets. For
example, trades occur frequently when many other trades have occurred recently,
and occur infrequently when few other trades have occurred recently.

Hawkes processes are a specific family of inhomogeneous Poisson PPs where
the temporal variation of ϕ(t) has not only an exogenous component (such as the
processes that we described in Section 9.1.3), but also an endogenous component
that depends on the recent arrivals of the PP itself. More precisely, a Hawkes
process is a point process whose arrival intensity is given by

ϕ(t) = ϕ0(t)+
∫ t

−∞
dN(u)Φ(t− u), (9.10)

where ϕ0(t) is a deterministic base intensity and Φ(t) ≥ 0 is a non-negative
influence kernel that describes how past events influence the current intensity.
Often Φ(t) is chosen to be a strictly decreasing function of t, meaning that the
influence of past events fades away with time.

Importantly, the integral in Equation (9.10) is calculated with respect to the
counting process N(u). The purpose of doing so is to sum the contributions to
ϕ(t) caused by all previous arrivals – which are precisely what N(u) counts. Since
dN(u) is equal to 1 if and only if one of the event-times ti falls in the interval
[u,u+ du], one can rewrite Equation (9.10) by replacing this integral with a sum
that runs over the realised arrival times of the point process:

ϕ(t) = ϕ0(t)+
∑
ti<t

Φ(t− ti). (9.11)
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As illustrated by Equation (9.11), the intensity function of a Hawkes process
consists of two parts:

• The first part (i.e. the ϕ0(t) term) is deterministic, and describes the exogenous
contribution to the rate dynamics. Its temporal variation might represent, for
example, the intra-day periodicity of the activity.

• The second part (i.e. the
∑

ti<tΦ(t − ti) term) describes the endogenous
contribution to the rate dynamics, which determines how previous arrivals affect
the present arrival intensity. Because the second part of the intensity function
depends on the history of the stochastic point process, the intensity function of a
Hawkes process is itself a stochastic process.

Hawkes processes are widely used to model high-frequency market microstruc-
ture events in calendar time. As we will see throughout the remainder of this
chapter, they offer several attractive benefits, including simplicity, flexibility, their
ability to account for a wide range of different event types in a multivariate setting,
their ability to account for non-stationarities through the exogenous ϕ0(t) term, and
their appealing mathematical and statistical properties. Their parameters also have
a simple and useful interpretation, and they thereby lead to a concise description
of many complex aspects of market microstructure.

9.2.2 Basic Properties of Hawkes Processes

To simplify our discussion, we first consider some basic properties of Hawkes
processes in the case where the exogenous intensity ϕ0 is time-independent. We
also assume that the process starts at t = 0 with no past (i.e. N(0) = 0). In this
framework, it is possible to derive several interesting results about the statistical
properties of the process.

First-Order Statistics
We first consider the mean intensity ϕ̄ of the process, defined as the long-term
growth rate of the counting process:

ϕ̄: = lim
t→∞

N(t)
t
.

Provided that the process reaches a stationary state such that this quantity exists,
ϕ̄ must be equal to the long-term mean value of the intensity, after the influence of
the initial state of the point process has died out:

ϕ̄ = lim
t→∞E[ϕ(t)].
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Since E[dN(u)] = ϕ(u)du, one finds from Equation (9.10) that ϕ̄ must obey the
self-consistent equation

ϕ̄ = ϕ0 + ϕ̄

∫ ∞

0
duΦ(u),

which only has a non-negative solution when the norm2

g :=
∫ ∞

0
duΦ(u) (9.12)

of the kernel satisfies g < 1. Note that this condition requires Φ(t) to decrease
sufficiently quickly for the integral to converge, and to be small enough for the
process to reach a stationary state.

Let gc = 1 denote the critical value for g. When g < gc, the mean intensity of the
Hawkes process is given by

ϕ̄ =
ϕ0

1− g
≥ ϕ0, (9.13)

which indicates that the Hawkes self-exciting mechanism causes the mean
intensity to increase. In the extreme case where g→ gc = 1, this feedback is so
strong that ϕ̄ diverges. When g > 1, the process explodes, in the sense that N(t)
grows faster and faster with increasing t, so that no stationary state can ever be
reached and the above mathematical formulas are meaningless. In the limit g = 0,
there is no feedback, so ϕ̄ = ϕ0 and we recover the homogeneous PP.

Second-Order Statistics
For a stationary Hawkes process with g < 1, the function

c(τ) :=
1
ϕ̄2

Cov

[
dN(t)

dt
,
dN(t+ τ)

dt

]
; τ > 0

describes the rescaled covariance of the arrival intensity. Note that since dN(t)2 =

dN(t), there is a singular ϕ̄δ(τ) contribution to the equal-time covariance.
Observe that

E[dN(t)dN(u)] = E[dN(t)|dN(u) = 1]E[dN(u)].

Recalling also that E[dN(u)] = ϕ̄du, it follows that the function c(·) is related to
conditional expectation of the intensity function, as:

E[dN(t)|dN(u) = 1] := ϕ̄
(
1+ c(t− u)

)
dt+ δ(t− u). (9.14)

Now, from the definition of the Hawkes process in Equation (9.10), one also has,
for t > u:

E[dN(t)|dN(u) = 1] =

[
ϕ0 +

∫ ∞

0
dvΦ(v)E[dN(t− v)|dN(u) = 1]

]
dt.

2 This quantity is also sometimes called the branching ratio (see Section 9.2.6).
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Using Equation (9.14), the second term on the right-hand side can be transformed
into∫ ∞

0
dvΦ(v)E[dN(t− v)|dN(u) = 1] = ϕ̄g+Φ(t− u)+ ϕ̄

∫ ∞

0
dvΦ(v)c(t− v− u).

By comparing the two expressions for E[dN(t)|dN(u)= 1] and noting that ϕ0+gϕ̄=
ϕ̄, we finally arrive at the Yule–Walker equation, for τ > 0:

c(τ) =
1
ϕ̄
Φ(τ)+

∫ ∞

0
duΦ(u)c(τ− u); c(−τ) = c(τ). (9.15)

Introducing

ĉ(z) =
∫ ∞

−∞
duc(u)e−zu, Φ̂(z) =

∫ ∞

0
duΦ(u)e−zu,

this equation turns out to be equivalent to3

1+ ϕ̄ ĉ(z) =
1

(1− Φ̂(z))(1− Φ̂(−z))
. (9.16)

Equation (9.15) thus provides a way to compute the covariance of the arrival
intensity c(·), given the Hawkes kernel Φ. Conversely, it also provides a way
to reconstruct the kernel of the underlying Hawkes process from an empirical
determination of the covariance c. In other words, the rescaled covariance of
the intensity c(τ) fully characterises the Hawkes kernel Φ(τ), while the average
intensity ϕ̄ allows one to infer the bare intensity ϕ0. Much like the Gaussian
process, the Hawkes process is entirely determined by its first- and second-order
statistics.4

9.2.3 Some Useful Results

By noting that Φ̂(0) = g, we obtain the identity

ϕ̄ ĉ(0) := ϕ̄
∫ ∞

−∞
duc(u) =

g(2− g)
(1− g)2

, (9.17)

which is valid for any kernel shape. Importantly, this identity tells us that the
integrated rescaled covariance is only determined by the branching ratio g of the
Hawkes process.

3 Deriving this result is non-trivial due to the infinite upper limit of the integral on the right-hand side of
Equation (9.15). For a derivation, see Bacry, E., & Muzy, J.-F. (2016). First- and second-order statistics
characterization of Hawkes processes and non-parametric estimation. IEEE Transactions on Information
Theory, 62(4), 2184–2202.

4 Note that by the same token, it is hard to distinguish correlation and causality, since two-point correlation
functions are always invariant under time reversal. Therefore, fitting a point process using a Hawkes model in
no way proves the existence of genuinely causal self-exciting effects. For an extended discussion, see Blanc, P.,
Donier, J., & Bouchaud, J. P. (2016). Quadratic Hawkes processes for financial prices. Quantitative Finance,
17, 1–18.
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From the covariance of the arrival intensity, one can compute the variance of the
number of events N(t+ τ)−N(t) in an interval of size τ > 0:

V [N(t+ τ)−N(t)] =
∫ t+τ

t

∫ t+τ

t
E
[
dN(u)dN(u′)

]
= ϕ̄τ+ 2ϕ̄2

∫ τ

0
du (τ− u)c(u), (9.18)

where the first term comes from the singular, equal-time contribution to c, and the
second term is zero for a homogeneous Poisson process, for which Φ = c = 0. It
also follows from Equation (9.18) that the clustering ratio (9.8) is:

r(τ) = 1+ 2ϕ̄
∫ τ

0
du

(
1− u

τ

)
c(u). (9.19)

Note that for a pure Poisson process, c(u) = 0, and we recover the standard result
r = 1. For a positive Hawkes kernel Φ, the value of c(u) becomes positive as well,
which leads to clustering (i.e. r > 1).

If we assume that c(u) decreases faster than u−2 for large u, so that
∫ ∞

0
duuc(u)

is a finite integral, then Equation (9.19) can be simplified at large τ, as

r(τ) ≈τ→∞ 1+ 2ϕ̄
∫ ∞

0
duc(u) = 1+ ϕ̄

∫ ∞

−∞
duc(u) =

1
(1− g)2

, (9.20)

where we have used the identity (9.17). This useful result can be used to estimate
the feedback parameter g from empirical data, without having to specify the shape
of the Hawkes kernel Φ.

9.2.4 Example I: The Exponential Kernel

To illustrate the application and interpretation of some of these results, we first
consider the case of an exponential kernel

Φ(t ≥ 0) = gωe−ωt, t ≥ 0, (9.21)

where ω−1 sets the time scale beyond which past events can be regarded not to
influence present intensity, and g is the norm of the kernel. Using Equation (9.15)
in Laplace space, one readily derives:

c(t > 0) =
ωg(2− g)

2ϕ0
ωe−(1−g)ωt. (9.22)

This result is very interesting, because it tells us that the Hawkes feedback not
only increases the mean intensity of the process (as intended), but also increases
the memory time of the process. While the direct self-exciting mechanism dies out



9.2 Hawkes Processes 171

in a time ω−1, the induced extra activity survives until a time ω−1/(1− g), which
diverges as g→ 1. We present an interpretation of this effect in terms of population
dynamics, or branching process, in Section 9.2.6.

The clustering ratio r can also be calculated exactly, using Equations (9.19) and
(9.22). One finds that

r =
1

(1− g)2
− g(2− g)

(1− g)3ωτ
(1− e−(1−g)ωτ), (9.23)

which rises from the Poisson value r = 1 when τ� ω−1 to the asymptotic value
r = (1− g)−2 when τ	ω−1.

Note that it is straightforward to simulate a Hawkes process with an exponential
kernel. The trick is to simulate the process in event-time by calculating the
(calendar) arrival times. Assume n events have already arrived at times t1, t2, · · · , tn.
We need to determine the probability density of the arrival time of the (n + 1)th

event. The cumulative law of the inter-arrival times δn is given by

P[δn ≤ τ] = 1− exp

⎡⎢⎢⎢⎢⎢⎢⎣−ϕ0τ− g
(
1− e−ωτ

)∑
k≤n

e−ω(tn−tk)

⎤⎥⎥⎥⎥⎥⎥⎦ . (9.24)

One can now generate the time series of arrival times iteratively from Equa-
tion (9.24) which can be achieved numerically by inverse-transform sampling.

9.2.5 Example II: The Near-Critical Power-Law Kernel

Consider now the case of a power-law kernel

Φ(t ≥ 0) = g
ωβ

(1+ωt)1+β
, (9.25)

where the parameter β > 0 ensures that the integral defining the norm of Φ is
convergent. In the limit z→ 0, the behaviour of Φ̂(z) depends on the value of β.
For β < 1, asymptotic analysis leads to

Φ̂(z) ≈ g− gΓ[1− β](z/ω)β.

Inserting this behaviour into Equation (9.16) allows one to derive the behaviour
of the correlation function c(t). For g→ 1, the inversion of the Laplace transform
gives a power-law behaviour for c(t) at large times, as5

c(t) = c∞t−γ; γ = 1− 2β. (9.26)

This result only makes sense if β < 1/2; otherwise, γ would be positive and c(t)
would grow without bound (which is clearly absurd). In fact, this is precisely

5 See Appendix A.2. The prefactor identification gives c−1∞ = 2g2ω−2β cos(πβ)Γ2[1− β]Γ[2β].
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the result of Brémaud and Massoulié: the critical Hawkes process only exists for
power-law kernels that decay with an exponent β in the range 0 < β < 1/2, such
that γ = 1−2β satisfies 0 < γ < 1. For β > 1/2 and g = 1, the Hawkes process never
reaches a stationary state, or is trivially empty. Conversely, when the correlation
function decays asymptotically as a power law with γ < 1, the Hawkes process is
necessarily critical (i.e. g = 1).

When β < 1/2 and g = 1− ε with ε � 1, the correlation function c(t) decays as
t−γ up to a (long) crossover time τ∗ ∼ ε−1/β, beyond which it decays much faster,
such that c(t) is integrable.

Finally, one can compute the large-τ behaviour of the clustering ratio r:

r(τ) ∼ 2c∞
(1−γ)(2−γ)

τ1−γ, (τ� τ∗),

which grows without bound when τ∗ →∞ (i.e. g→ 1).

9.2.6 Hawkes Processes and Population Dynamics

By regarding them as branching processes (also known as Watson–Galton
models), Hawkes processes can also model population dynamics. In a branching
process, exogenous “mother” (or “immigration”) events occur at rate ϕ0, and
endogenously produce “child” (or “birth”) events, which themselves also endoge-
nously produce child events, and so on. A single mother event and all its child
events are collectively called a family.

In such models, an important quantity is the expected number g of child events
that any single (mother or child) event produces. This number g is called the
branching ratio. If g > 1, then each event produces more than one child event
on average, so the population explodes. If g < 1, then each event produces less
than one child event on average, so the endogenous influence of any single event
eventually dies out (although in a Hawkes process, this does not necessarily
correspond to the whole process dying out, due to the exogenous immigration
arrivals, which are driven by ϕ0). The mean family size S̄ is 1/(1− g).

The critical case g = gc = 1 is extremely interesting, because for some special
choices of power-law kernels Φ, the population can survive indefinitely and reach
a stationary state even in the limit of no “ancestors”, when ϕ0→ 0. In this case, the
family sizes S are distributed as a power-law with a universal exponent S −3/2 (i.e.
independently of the precise shape of Φ). We will see below that this special case,
first studied by Brémaud and Massoulié,6 seems to corresponds to the behaviour
observable in financial markets.

6 See: Brémaud, P., & Massoulié, L. (2001). Hawkes branching point processes without ancestors. Journal of
Applied Probability, 38(01), 122–135.
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The analogy with population dynamics also allows us to understand why the
memory time of the process increases as the expected number of child events
increases: while mother events only have a certain fertility lifetime ω−1, the
lifetime of the whole lineage (which keeps the memory of the process) can be
much longer – in fact, by a factor of the mean family size, 1/(1− g).

9.3 Empirical Calibration of Hawkes Processes

At the beginning of this chapter, we remarked that two features of real markets
render homogeneous Poisson processes as unsuitable for modelling event arrival
times. The first feature is the existence of seasonalities; the second feature is the
existence of temporal clustering (even after the seasonalities have been accounted
for). As we have discussed throughout the chapter, a Hawkes process (as defined in
Equation (9.10)) can address both of these problems by incorporating seasonalities
via its exogenous arrival rate ϕ0(t) and incorporating clustering via the Hawkes
kernel. In this section, we explain how Hawkes processes can be calibrated on
data. We first discuss how to account for the observed intra-day seasonalities,
then we present a selection of methods for estimating the shape of the Hawkes
kernel.

9.3.1 Addressing Intra-day Seasonalities

As we have discussed several times already, clear intra-day patterns influence
activity levels in financial markets (see Figures 1.3 and 2.5 and Section 4.2). In
the context of Hawkes processes, this feature can be addressed as follows. First,
measure the intra-day pattern of activity ϕ̄(t) across many different trading days.
Then, given ϕ̄(t), define business time as

t̂(t) =
∫ t

0
du ϕ̄(u).

In this re-parameterised version of calendar time, the speed of the clock is
influenced by the average level of activity. This simple trick causes the activity
profile to become flat in business time. We implement this technique (which may
essentially be regarded as a pre-processing step) in the financial applications that
we describe throughout the remainder of this chapter.

9.3.2 Estimating the Hawkes Kernel

We now turn to estimating the Hawkes kernel Φ(t). This kernel is characterised by
two important features:
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• its time dependence (e.g. an exponential kernel with some well-defined decay
time ω−1); and

• its norm g =
∫ ∞

0
duΦ(u), which quantifies the level of self-reflexivity in the

activity.

As we stated in Section 9.3.1, we assume that we have re-parameterised
time to address intra-day seasonalities, and therefore that ϕ0, when measured in
business time, is constant. We first present the simplest way to elicit and quantify
non-Poissonian effects, based on the clustering ratio r. Within the context of
Hawkes processes, estimating r immediately leads to an estimate of the feedback
intensity (or kernel norm) g, independently of the form of the kernel itself (see
Equation 9.19). In the context of microstructural activity, we will see that g is not
only positive (which indicates that clustering effects are present beyond the mere
existence of intra-day patterns) but, quite interestingly, is not far from the critical
value gc = 1. We then proceed to the calibration of Hawkes processes using two
traditional calibration processes: maximum likelihood estimation and the method
of moments.

9.3.3 Direct Estimation of the Feedback Parameter

Recall from Equation (9.20) that for large τ,

r(τ) ≈τ→∞ 1
(1− g)2

.

Empirically, one can extract M (possibly overlapping) intervals of size τ from a
long time series of events, and compute from these M sub-samples the mean and
variance of the number of events in such intervals.7 The theoretical prediction of
Equation (9.23) is very well-obeyed by the surrogate series generated using an
exponential kernel, whereas for the financial data, the clustering ratio r(τ) does
not seem to saturate even on windows of τ = 105 seconds, but rather grows as a
power-law of time. This means that as the time scale of observations increases, the
effective feedback parameter geff(τ) := 1− 1/

√
r(τ) increases towards gc = 1, and

does so as a power-law:

geff(τ) � 1− A
τβ
,

where A is a constant and β � 0.35 (see the inset of Figure 9.1).
Returning to Equation (9.19), this power-law behaviour suggests that the

correlation function c(u) itself decays as a slow power-law, as we mentioned in

7 See: Hardiman, S. J., & Bouchaud, J. P. (2014). Branching-ratio approximation for the self-exciting Hawkes
process. Physical Review E, 90(6), 062807.
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Figure 9.1. Estimation of the effective feedback parameter geff(τ) as a function
of τ, measured in seconds, for (solid curve) mid-price changes of TSLA, and
(dashed) a simulation of a Hawkes process using an exponential kernel with norm
g= 1/2. We confirm our estimation procedure by observing that the simulated geff
converges exponentially fast to its theoretical asymptotic value, geff(∞)→ g= 1/2.
The empirical time series exhibits criticality because geff(τ) converges to 1, (inset)
as a power-law with exponent β � 0.35 (the dotted line shows a power law with
exponent 0.35).

Section 2.2.4. More precisely, assuming that c(u) ∼u→∞ c∞/uγ with γ < 1, one
obtains

r(τ) =
1

(1− geff(τ))2
≈ 2c∞

(1−γ)(2−γ)
τ1−γ,

which indeed leads to geff(τ) approaching 1 as a power law, with β = (1 − γ)/2
(leading to γ � 0.3). This is as expected for a critical Hawkes process with a
power-law kernel – see Equation (9.26). We will return to this observation in
Section 9.3.5.

9.3.4 Maximum-Likelihood Estimation

If we assume that the kernel functionΦ(t) can be written in a parametric form, with
parameter vector θ, then we can use standard maximum-likelihood estimation
(MLE) to estimate θ from a realisation of the point process. If N arrivals occur
during the interval [0,T ), then the likelihood function L is given by the joint density
of all the observed intervals [t0 = 0, t1], [t1, t2], . . . in [0,T ). First, note that the
probability for an event to occur between ti and ti + dt but not at any intermediate
times ti−1 < t < ti is given by:

exp

(
−
∫ ti

ti−1

duϕ(u|θ)
)
ϕ(ti|θ)dt.
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The likelihood of the whole sequence of event times is then given by:

L (t1, t2, . . . , tN |θ) =
⎛⎜⎜⎜⎜⎜⎝ N∏

i=1

ϕ(ti|θ)exp

(
−
∫ ti

ti−1

duϕ(u|θ)
)⎞⎟⎟⎟⎟⎟⎠exp

(
−
∫ T

tN

duϕ(u|θ)
)
,

=

⎛⎜⎜⎜⎜⎜⎝ N∏
i=1

ϕ(ti|θ)
⎞⎟⎟⎟⎟⎟⎠exp

(
−
∫ T

0
duϕ(u|θ)

)
.

Taking logarithms of both sides yields the log likelihood

ln L (t1, t2, . . . , tN |θ) =
N∑

i=1

lnϕ(ti|θ)−
∫ T

0
duϕ(u|θ). (9.27)

The MLE θ∗ is known to have nice properties: it is both consistent (i.e. it
converges to the true θ when T → ∞) and asymptotically normally distributed
around the true θ with a known covariance matrix, with all elements of order
T−1. However, because the likelihood itself depends on the set of arrival
times t1, t2, . . . , tN , there does not exist a simple “one-size-fits-all” closed-form
solution for the MLE of θ. In many cases, the simplest approach is to use a
numerical optimisation algorithm to maximise Equation (9.11) directly. However,
some specific choices of Φ lead to sufficiently simple parametric forms for
Equation (9.11) to allow easy computation of this integral, and therefore of the
MLE. One such example is the exponential kernel, which we now investigate in
more detail.

The Exponential Kernel
The exponential Hawkes process, which is defined by the kernel in Equation (9.21),
depends on three parameters: θ= (ϕ0,ω,g). With this kernel, the Hawkes dynamics
obeys the stochastic differential equation

dϕ(t) = −ω(ϕ(t)−ϕ0)dt+ gωdN(t). (9.28)

We can interpret this as ϕ(t) relaxing exponentially towards its base intensity ϕ0,
but being jolted upwards by an amount gω each time an event occurs.

This exponential form is popular in many practical applications, mainly due
to its Markovian nature: the evolution of ϕ(t) only depends on the present state
of the system, because all of the past is encoded into the value of ϕ(t) itself.
Numerically, this enables fast updates of the quantities needed to compute the
likelihood function. Indeed, one can write:

lnL (t1, t2, . . . , tN |θ) = −Tϕ0 +

N∑
i=1

[
ln (ϕ0 + gωZi)− g

(
e−ω(T−ti) − 1

)]
(9.29)
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where we have introduced the notation

Zi :=
i−1∑
k=1

e−ω(ti−tk).

Expressed in this way, it seems that evaluating the likelihood function is an O(N2)
operation. However, by using another trick, this can be reduced further, to O(N).
The trick is to notice that Zi can be computed as a simple recursion, since:

Zi = e−ω(ti−ti−1)
i−1∑
k=1

e−ω(ti−1−tk) = (1+Zi−1)e−ω(ti−ti−1).

The same trick can also be used when the kernel is a weighted sum of K
exponentials:

Φ(t) = g
K∑

k=1

akωke−ωkt,

K∑
k=1

ak = 1. (9.30)

To use the trick in this case, one has to introduce K different objects Zk
i that all

evolve according to their own recursion:

Zk
i = e−ωk(ti−ti−1)

(
1+Zk

i−1

)
.

In this way, the computation of L and its gradients with respect to the three
parameters θ = (ϕ0,ω,g) (which are needed to locate the MLE θ∗) can all be
performed efficiently, even on long time series. This is important because (as we
discuss in the next section) power-law kernels can be approximated as sums of a
finite number of exponentials.

The Power-Law Kernel
The power-law Hawkes process defined in Equation (9.25),

Φ(t ≥ 0) = g
ωβ

(1+ωt)1+β
,

depends on four parameters: θ = (ϕ0,ω,g,β). Interestingly, exponential kernels can
be seen as a special limit of power-law kernels, when β → ∞ and ω → 0 with
a fixed value of the product ωβ. Therefore, exponential Hawkes processes are a
sub-family of power-law Hawkes processes.

Conversely, a power-law kernel can be accurately reproduced by a sum of
exponential kernels with different time scales and different weights.8 In particular,

8 On this point, see, e.g., Bochud, T., & Challet, D. (2007). Optimal approximations of power laws with
exponentials: Application to volatility models with long memory. Quantitative Finance, 7(6), 585–589, and
Hardiman, S. J., Bercot, N., & Bouchaud, J. P. (2013). Critical reflexivity in financial markets: A Hawkes
process analysis. European Physical Journal B, 86, 442–447.
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choosing a discrete set of time scales as a geometric series, i.e. ωk = ω/bk, b > 1,
and weights as ak = ω

β
k , Equation (9.30) allows one to reproduce quite reasonably

a power-law decaying kernel Φ(t)∼ t−1−β, at least for t such that ω−1� t� bKω−1.
When using the MLE method for estimating the parameters of power-law

kernels on financial data, special care must be given to errors in the time-stamping
of the events. Such errors can substantially affect the MLE procedure and lead to
spurious solutions, due to artefacts arising from short-time dynamics. In any case,
an MLE of Hawkes parameters applied to a wide variety of financial contracts
suggests very high values of g∗, close to the critical value gc = 1, and yields a
power-law exponent β∗ in the range 0.1−0.2 (see references in Section 9.7). This
clearly excludes the possibility of an exponential kernel, which corresponds to
β	 1. Interestingly, the characteristic time scale ω−1, below which the power-law
behaviour saturates, has decreased considerably over time, from several seconds
in 1998 to milliseconds in 2012. This is clearly contemporaneous to the advent
of execution algorithms and high-frequency trading, which vindicates the idea
that any kind of feedback mechanism has accelerated during that period. Note,
however, that in contrast with the exponential case, a power-law kernel plausibly
suggests the existence of a wide spectrum of reaction times in the market, from
milliseconds to days or longer.

There is, however, a problem with using this approach to calibrate a Hawkes
process to empirical data. The MLE method implicitly over-focuses on the
short-time behaviour of the kernel and is quite insensitive to the shape of the kernel
Φ(t) at large lags. Indeed, since the power-law kernel gives much greater weight to
short lags than to long lags, the local intensity ϕ is mostly determined by the recent
events and much less by the far-away past. Therefore, the MLE procedure will
mostly optimise the short-time behaviour of the kernel, and will be quite sensitive
to the detailed shape of this kernel for t→ 0, as well as on the quality of the data
for short times. This is why the value of the exponent β∗ obtained using MLE is
significantly smaller than the value of β � 0.35 obtained from the direct estimation
method used in the previous section: the two methods zoom in on different regions
of the time axis, as we elaborate on in the next paragraph.

9.3.5 The Method of Moments

Another popular tool for calibrating Hawkes process is the method of moments,
which seeks to determine the parameters θ such that the theoretical moments of
specified observables match their empirically determined counterparts. Restricting
this method to first- and second-order statistics (which is enough to completely
determine a Hawkes process, see Section 9.2.2), this method amounts to fitting ϕ0

and Φ(t) such that:

• the mean intensity ϕ̄= ϕ0/(1−g) matches the empirically determined mean; and
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• the predicted intensity correlation function c(t) (using the Yule–Walker equation
(9.15)) reproduces the empirically determined intensity correlation.

The first condition simply amounts to counting the number of events in sufficiently
large intervals, but the second condition requires extracting the shape of the kernel
Φ(t) using the empirical correlation and Equation (9.15), which is much less trivial.

In fact, seen as an expression for Φ(t) given c(t), Equation (9.15) is called a
Wiener–Hopf equation. Solving it requires complicated numerical methods, but
once this is done, the kernelΦ(t) can be determined in a wide region of time scales9

(provided c(t) can be measured with sufficient accuracy). Again, implementing
this method on empirical data leads to a power-law kernel with a norm close to
1. An alternative method consists in fitting the measured correlation function c(t)
with simple mathematical expressions, and inverting the Wiener–Hopf equation
analytically.

The method of moments requires measuring the function c(t) accurately. This
can prove difficult, as it requires choosing an adequate bin size Δt to define the
count increments ΔN. Interestingly, the clustering ratio r(τ) allows one to bypass
this step, and provides simple and intuitive results. Plotting r as a function of
τ gives direct access to the time dependence of

∫ τ
0

du (1 − u/τ)c(u), and thus of
c(t) itself. As shown in Figure 9.1, c(t) actually has not one but two power-law
regimes: a short-time behaviour with β � 0.2 − 0.25 (compatible with MLE) and
a long-time behaviour with β � 0.35 − 0.4. A similar crossover between the two
regimes exists for, e.g., the S&P 500 futures contract, and occurs for τ of the
order of several minutes.10 Both regimes are characterised by exponents β in the
Brémaud–Massoulié interval 0 < β < 1

2 .

9.4 From Hawkes Processes to Price Statistics

In Section 2.2.4, we introduced a simple model in which changes of the mid-price
m(t) occur as a homogeneous Poisson process with rate ϕ, all have size ϑ (i.e. one
tick), and occur upwards or downwards with equal probabilities. This model can
be expressed concisely as:

dm(t) = ε(t)ϑdN(t), (9.31)

where N(t) is the counting process of mid-price changes and ε(t) = ±1 is an
independent binary random variable. We now extend this model to the case where
ϕ(t) is time-dependent, such that dN(t) is given by a stationary Hawkes process
with an influence kernel Φ.

9 Note, however, that this method provides no guarantee that for a given c(t), the kernel function Φ will be
everywhere non-negative, as is required for the intensity ϕ.

10 See: Hardiman et al. (2013).
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The local volatility of the price process, measured on a time interval τ small
enough to neglect the evolution of ϕ(t), is given by

σ2(t) :=
1
τ
V

[∫ t+τ

t
dm(t′)

]
=

1
τ
E[N(t+ τ)−N(t)] = ϑ2ϕ(t),

where we have used the fact that E[ε] = 0 and

E[ε(t)ε(t′)] = 0 for all t′ � t.

In other words, as in Section 2.2.4, volatility σ and market activity ϕ are one
and the same thing in this simple framework (see Equation (2.18)).

For a Hawkes process, the intensity ϕ(t) is a random variable with some
distribution and some temporal correlations described by the function c(t). This
is an enticing model of prices, since its volatility is random and clustered in time,
which matches empirical observations. In fact, choosing a power-law kernel Φ
allows one to generate the long-range correlations that we discussed in Chapter 2.

Is this power-law Hawkes process for prices a simple way to reconcile these
empirical observations in a parsimonious theoretical framework? As it turns out,
there are both pros and cons to this idea. The fact that ϕ(t) has long-range memory
that can be described by a near-critical power-law kernelΦ(t) (see Section 9.2.5) is
a clear plus. However, the distribution of ϕ values generated by a Hawkes process
has relatively thin tails, which decay exponentially for large values of ϕ.11

This exponential tail is transmitted to the distribution of price changes, m(t +
τ)−m(t), which therefore does not exhibit the power-law tails that are universally
observed in real markets. In other words, Hawkes processes do not produce
sufficiently large fluctuations in the activity rate to reproduce the large price moves
induced by large activity bursts.

There are two (possibly complementary) paths to solving these issues with the
model. The first path is to argue that Equation (9.31) is too restrictive, and to allow
the amplitude of individual jumps to have fat tails (rather than simply taking the
two values ±ϑ). This approach is certainly plausible for small-tick assets, for which
both the bid–ask spread and the gap between the best and second-best occupied
price levels in the LOB typically undergo large fluctuations. However, it is less
satisfactory for large-tick assets, for which prices seldom change by more than
one tick at a time but for which the distribution of returns aggregated over a longer
time interval τ (say five minutes) still exhibits power-law tails. Moreover, this
approach is not very satisfying, because it requires us to simply input a power-law

11 In the limit g = 1− ε, with ε→ 0, the full distribution of ϕ can be obtained as

Pst.(ϕ) ∝ ϕ 2ϕ0
ω e−2εϕ/ω,

which shows explicitly the exponential behaviour of the tail. More generally, the tail decays as e−zcϕ, where zc
is the solution of gωzc = ln(1+ωzc).
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distribution for individual price changes without understanding where it comes
from.

The second path is to extend the model and allow the level of market activity to
be influenced by the amplitude of price changes themselves, and not only by their
frequency. This framework produces a much richer structure, in which power-law
tails are indeed generated. We will discuss this approach – of generalised Hawkes
processes – in the next section.

9.5 Generalised Hawkes Processes
We now consider some generalisations to the standard Hawkes framework that we
have developed so far in this chapter, and also present some examples to illustrate
how these generalisations can help with practical applications.

Inhibition
The condition that a Hawkes process feedback kernel Φ(t) is positive for all lags is
both necessary and sufficient to ensure that the rate ϕ(t) always remains positive for
any realisation of the underlying Poisson process. A positive kernel always leads to
self-excitation and clustering.

In some circumstances, however, it is desirable to describe inhibitory effects,
such that previous events produce negative feedback on ϕ(t). In the presence of such
inhibitory effects, one way to ensure that ϕ(t) remains positive is to write

ϕ(t) = F

[
ϕ0 +

∫ t

0
dN(u)Φ(t− u)

]
, (9.32)

where F(x) is a non-negative function such as F(x) = Θ(x) or F(x) = ln(1 + ex).
Provided that the slope of the function F(x) is always less than or equal to 1, the
same stability condition (g < 1) can be established in these cases.12 Such models
can be simulated and calibrated numerically, but are much harder to characterise
analytically than Hawkes models that do not include such inhibitory effects.

Exogenous Events
Sometimes, it is known in advance that certain events occurring at known times
(such as the release of scheduled macroeconomic news announcements) will lead
to an increase in the activity rate. This effect is not a self-excitation, but is instead
truly exogenous. A simple way to include these exogenous events in the Hawkes
description is to write

ϕ(t) = ϕ0 +

∫ t

0
dN(u)Φ(t− u)+

∑
ti<t

aiΦexo.(t− ti), (9.33)

where ti is the time of the ith such event, which has strength ai, and Φexo. is another
kernel describing how the impact of these events dies out with time.13

12 See: Brémaud, P., & Massoulié, L. (1996). Stability of nonlinear Hawkes processes. Annals of Probability, 24,
1563–1588.

13 See: Rambaldi, M., Pennesi, P., & Lillo, F. (2015). Modelling foreign exchange activity around macroeconomic
news: Hawkes-process approach. Physical Review E, 91(1), 012819.
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Multi-Event Hawkes Processes
The temporal evolution of an LOB is a multi-event problem, in which the different
types of events can influence the future occurrences of both themselves and each
other. For example, market order arrivals can trigger other market order arrivals,
limit order arrivals, and cancellations (and vice-versa). The events that occur in other
markets could also influence the activity in a given LOB.

The Hawkes framework can easily be extended to a multivariate framework with
K event types, each with a time-dependent rate ϕi(t), i = 1, . . . ,K. The multivariate
form of Equation (9.10) is simply

ϕi(t) = ϕ0i +

∫ t

0

K∑
j=1

dNj(u)Φi, j(t− u), (9.34)

where Φi, j(t) ≥ 0 is a non-negative kernel function that describes how the past
occurrence of an event of type j at time t − u increases the intensity of the events
of type i at time t.

The multivariate Hawkes framework is very versatile, because both the cross-event
excitations and the temporal structures of the feedback can be chosen to reflect the
activity observable in empirical data. The kernelΦi, j(t) need not be symmetric, so that
the influence of type-i events on type- j activity need not be equal to the influence of
type- j events on type-i activity.

In the case where the exogenous event rates are constant, the first- and
second-order statistics can again be calculated exactly:

• The mean intensity of type-i events is given by a vector generalisation of the 1
component case, Equation (9.13):

ϕ̄i =

K∑
j=1

[(1− g)−1]i, jϕ0, j,

where g is the matrix of kernel norms

gi, j :=
∫ ∞

0
duΦi, j(u).

The process is stable provided the spectral radius of the matrix g is strictly less
than 1.

• For t > u, the conditional mean intensity is given by

E[dNi(t)|dNj(u) = 1] = ϕ̄i
(
1+ ci, j(t− u)

)
dt,

where c(u) is the solution of a matrix Wiener–Hopf equation

ϕ̄ici, j(u) = Φi, j(u)+
K∑

k=1

∫ ∞

0
dvΦik(u− v)ϕ̄kck j(v). (9.35)

Again, the lag-dependent matrix c is directly related to the covariance of the
intensity as:

Cov

[
dNi(t)

dt
,
dNj(u)

du

]
= ϕ̄iϕ̄ jci, j(t− u)+ ϕ̄iδi, jδ(t− u).
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Hawkes Processes with Price Feedback
In a Hawkes process, past events feed back into future activity. Taking a step back
from formalism and thinking about financial markets, it seems reasonable to conclude
that while all types of market activity might influence future trading, price moves are
particularly salient events that affect traders’ future behaviour and decisions. For
example, local trends (such as sequences of consecutive price changes in the same
direction) induce reactions from the market, either because traders believe that these
trends reveal some hidden information, or because if prices reach a certain level, they
can trigger other execution decisions (such as stop-losses).

From this point of view, it is natural to extend the Hawkes formalism by writing:14

ϕ(t) = ϕ0 +

∫ t

0
dN(u)Φ(t− u)+

[∫ t

0
dm(u)Ψ(t− u)

]2

, (9.36)

and
dm(t) = ε(t)ϑdN(t), (9.37)

where Equation (9.36) describes the intensity, Equation (9.37) describes the
mid-price change, andΨ is a kernel that measures the influence of past returns. In the
simplest case, where Ψ is an exponential kernel, the trend is an exponential moving
average of the recent price changes over some time horizon. The last term is the
square of the trend, in which case only the amplitude (but not the sign) of the recent
price change is relevant. This means that a large price change in a single direction
produces a much greater increase in activity than does a sequence of many prices
changes in alternating directions.

In this extended model with price feedback, one can derive closed-form
expressions for the first-, second- and third-order statistics. For example, the mean
activity rate ϕ̄ is given by

ϕ̄ =
ϕ0

1− gΦ − gΨ2
,

where gΦ is the norm of Φ and gΨ2 is the norm of the square of Ψ. The model thus
becomes unstable when gΦ + gΨ2 > 1.

The specific form of Equation (9.36) is in fact motivated by empirical data, and
the resulting model can be seen as a natural continuous-time definition of the usual
GARCH model. Remarkably, when both Φ and Ψ are exponential kernels, some
analytical progress is possible, and one can show that the distribution of ϕ acquires
power-law tails. The value of the tail exponent depends on the norms gΦ and gΨ2 ,
and can be set in the range of empirical values, even with a small value of the norm
of gΨ2 . In other words, while the pure Hawkes model has exponentially decaying
tails (and is therefore a poor starting point for explaining the distribution of returns),
incorporating a small trend feedback allows one to generate much more realistic price
trajectories with fat tails.

9.6 Conclusion and Open Issues

In this chapter, we have introduced the popular family of Hawkes models, which
help to address the difficult problem of understanding the highly clustered and
intermittent evolution of financial markets in calendar time. In a Hawkes process,
the event arrival intensity at a given time depends not only on an exogenous
component, but also on an endogenous or “self-excitation” term.

14 See: Blanc, P., Donier, J., & Bouchaud, J. P. (2016). Quadratic Hawkes processes for financial prices.
Quantitative Finance, 17, 1–18.
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Hawkes processes are extremely versatile tools for modelling univariate and
multivariate point processes in calendar time. Like Gaussian processes, Hawkes
processes are entirely determined by their first- and second-order statistics. It is
therefore relatively easy to calibrate a Hawkes process on data. Another benefit of
using Hawkes processes is the possibility to interpret their fitted parameter values.
This allows one to quantify interesting aspects such as the temporal structure of
the memory kernel and the total feedback strength g.

When Hawkes models are calibrated on financial data, one finds empirically that
the memory kernel has a power-law structure, which shows that multiple different
time scales are needed to account for how markets respond to past activity. This
is in line with many other observations, such as the well-known long memory
structure that we discuss in Chapter 10. Note however that calibrating a Hawkes
process to data does not prove the existence of a genuine causal self-excitation
mechanism: as often, two-point correlations (used to calibrate the model) do not
imply causality.

Perhaps surprisingly, empirical calibration systematically suggests that the
feedback strength g is close to the critical value gc = 1, beyond which the feedback
becomes so strong that the activity intensity diverges and the Hawkes process
ceases to be well defined. There are two possible ways to interpret this observation:
one is that markets operate in a regime that is very close to being unstable; the other
is that the Hawkes framework is too restrictive and fails to capture the complexity
of real financial markets. In fact, as we emphasised in Section 9.2.6, the only way
that a Hawkes process can reproduce long memory in the activity is for it to be
critical, which is somewhat suspicious. More general models, such as the Hawkes
model with price feedback, are not so constrained. This hints of a warning that is
more general in scope: even when they are enticing and provide extremely good fits
to the data, models can lead to erroneous conclusions because they fail to capture
the underlying reality.

Take-Home Messages

(i) Market activity is not time-homogeneous, but rather exhibits both
intra-day patterns and endogenous intermittency.

(ii) Real-time market activity can be modelled using point processes,
in which events occur in continuous time according to a given rate
(intensity). The simplest PP is a homogeneous Poisson process,
for which inter-arrival times are independent exponential random
variables with a constant rate parameter.

(iii) Linear Hawkes processes are simple auto-regressive models in which
the intensity has both an exogenous component and an endogenous
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component. The exogenous component can vary with time to account
for known trends or seasonalities. The endogenous component is
measured by a kernel that describes how past events influence the
present intensity.

(iv) The larger the norm of the kernel, the more “self-exciting” the process.
The branching ratio describes the expected number of future events
that will originate from a given event in a Hawkes process.

(v) When calibrated on financial data, the branching ratio is found to be
close to 1, which suggests that a large fraction of market activity is
endogenous.

(vi) Linear Hawkes processes fail to reproduce the strong volatility
clustering and fat-tailed returns distributions that occur in real data.
The Hawkes model can be made to produce more realistic returns
by including additional effects, such as including price returns in the
feedback mechanism.
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10

Long-Range Persistence of Order Flow

An unfailing memory is not a very powerful incentive to the study of the phenomena
of memory.

(Marcel Proust)

In the previous chapter, we noted that activity in financial markets tends to cluster
in time. As we also noted, such clustering is not explained by local correlations of
market activity, but instead suggests that market activity is a long-memory process.
In this chapter, we discuss another type of long memory that is conceptually
unrelated to this long memory of activity: the highly persistent nature of the
sequence of binary variables εt that describe the direction of market orders. As
we will see, buy orders tend to follow other buy orders and sell orders tend to
follow other sell orders, both for very long periods of time.

More formally, let εt denote the sign of the tth market order, with εt = +1
for a buy market order and εt = −1 for a sell market order, where t is discrete
and counts the number of market orders. In this event-time framework, one can
characterise the statistical properties of the time series of signs via the market-order
sign autocorrelation function

C(�) := Cov[εt, εt+�]. (10.1)

As we will see in this chapter, the surprising empirical result is that C(�)
decays extremely slowly with �, and is well approximated by a power-law �−γ

with γ < 1. Importantly, this effect is different from activity clustering in time,
which we considered in Chapter 9. For example, a process with exponentially
distributed inter-arrival times – as would occur if arrivals are described by a
homogeneous Poisson process – can still have long-range persistence in order
signs. Conversely, a process in which order signs are uncorrelated could still
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have long-range autocorrelations in inter-arrival times. Therefore, the underlying
mechanisms explaining these two phenomena could be completely different.1

In this chapter, we first review the empirical evidence for long-range persistence
in εt. We then consider some consequences of this fact, including the apparent effi-
ciency paradox, which asks the question of how prices can remain unpredictable
when order flow (which impacts the price) is so predictable. We then introduce two
models that are capable of producing εt series with long-range autocorrelations,
and consider how to calibrate such models on empirical data to make predictions
of future order signs. Finally, we will discuss the possible origins of the long-range
autocorrelations that we observe empirically.

10.1 Empirical Evidence

The order-sign autocorrelation function defined by Equation (10.1) has been
studied by many authors and on many different asset classes, including equities,
FX and futures (see references in Section 10.7). While it has been known for a long
time that market order signs are positively autocorrelated, it came as a surprise
that these autocorrelations decay extremely slowly. Figure 10.1 shows C(�) for our
four stocks on NASDAQ. Consistently with the existing empirical studies of other
assets, the figure suggests that C(�) decays as a power-law �−γ with γ < 1, at least
up to very large lags (beyond which statistical precision is lost). Mathematically,
the value γ < 1 means that C(�) is non-integrable, which means that the order-sign
process is a long-memory process.2 Note that the initial decrease of C(�) is often
faster (exponential-like), followed by a slow, power-law regime.

The fact that C(�) decays so slowly has many important consequences. For a
long-memory process, the conditional expectation of εt+� given that εt = 1 is

E[εt+�|εt = 1] =C(�) ∼ c∞
�γ
. (10.2)

Numerically, with the realistic values c∞ = 0.5 and γ = 1
2 , this gives C(10000) ≈

0.005. Therefore, if we observe a buy market order now, the probability that a
market order 10,000 trades in the future is a buy order exceeds that for a sell
order by more than 0.5%. In modern equities markets for liquid assets, a time-lag
of 10,000 trades corresponds to a few hours or even a few days of trading. Where
does this long-range predictability come from? We will return to this question later
in this chapter.

1 For example, using a Hawkes process to generate the arrival times of orders whose signs are uncorrelated would
not create long-range autocorrelations in the order-sign series.

2 For a detailed introduction to long-memory processes, see, e.g., Beran, J. (1994). Statistics for long-memory
processes. Chapman & Hall.
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Figure 10.1. Autocorrelation function of the market order sign process for INTC,
CSCO, TSLA and PCLN. The dashed line represents a power-law with exponent
−0.5. The missing data points correspond to negative values.

10.2 Order Size and Aggressiveness

Until now, we have treated all market orders on an equal footing, independently
of their volume. In theory, we could consider the time series of signed volumes
εtυt (where υt denotes the volume of the market order arriving at time t). However,
the distribution of order volumes has heavy tails, which complicates the estimation
of the corresponding autocorrelation function. Furthermore, simply knowing that
a market order is large only tells us half the story, because the impact caused by
the arrival of a large buy (respectively, sell) market order depends on the volume
available at the ask (respectively, bid) price.

A more useful idea is to label market orders with a simple binary aggressiveness
variable πt ∈ {0,1}, which indicates whether or not the size of the market order is
sufficiently large to trigger an immediate price change (πt = 1) or not (πt = 0). Put
another way, a market order has πt = 1 if and only if its size is greater than or equal
to the volume available at the opposite-side best quote at its time of arrival.3

Throughout the book, we will write MO1 to denote market orders for which
πt = 1 and MO0 to denote market orders for which πt = 0. We must then specify four
correlation functions, depending on the type of events that we wish to consider.
For clarity, we introduce an indicator variable I(πt = π), which is equal to 1 if the
event at time t is of type π, and 0 otherwise. By standard properties of an indicator

3 Note that in some cases, the emptied queue is then immediately refilled, reverting the initial price change.
This is the case, for example, when hidden liquidity (e.g. iceberg orders) are present. Conversely, a market
order smaller than the size of the queue can be immediately followed by a wave of cancellations, leading to a
subsequent price change. Our definition is such that the first case corresponds to π = 1 and the second case to
π = 0.
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function, it follows that

P(π) = E[I(πt = π)].

For a pair of events π and π′ both in {MO0,MO1}, we define the conditional
correlation of order signs as:

Cπ,π′(�) := E[εtεt+�|πt = π,πt+� = π
′],

=
E[εt I(πt = π) · εt+�I(πt+� = π

′)]
P(π)P(π′)

. (10.3)

For � > 0, the first subscript of Cπ,π′(�) indicates the type of the event that happened
first. The unconditional sign-correlation function is given by

C(�) =
∑
π=0,1

∑
π′=0,1

P(π)P(π′)Cπ,π′(�).

By symmetry in the definition of C, it follows that

Cπ,π′(�) =Cπ′,π(−�).

If π � π′, then in general Cπ,π′(�) � Cπ′,π(�). In other words, the correlation of the
sign of an aggressive market order at time t with that of a non-aggressive market
order at time t+ � has no reason to be equal to the corresponding correlation when
the non-aggressive order arrives first.

Figure 10.2 shows the empirical values of these four conditional correlation
functions. These results help to shed light on the origin of the slow decay of
C(�). For small-tick stocks, all four correlation functions behave similarly to each
other. This makes sense, because an aggressive market order for a small-tick stock
typically induces only a small relative price change, so there is little difference
between market orders in MO0 and those in MO1 in this case. For large-tick stocks,
by contrast, we observe significant differences between the behaviour for MO0 and
MO1. Although the long-range power-law decay still occurs for pairs of market
orders in MO0, the sign of market orders in MO1 is negatively correlated with
that of the next market order. This also makes sense: after a substantial move up
(respectively, down) induced by an aggressive buy (respectively, sell) market order,
one expects that the flow inverts as sellers (respectively, buyers) are enticed by the
new, more favourable price. Note finally that C0,1(�) decays faster than C0,0(�), but
still approximately as a power-law.
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Figure 10.2. Conditional correlation functions (circles) C0,0, (diamonds) C0,1,
(triangles) C1,0 and (squares) C1,1, of the market order sign process for (top left)
INTC, (top right) CSCO, (bottom left) TSLA and (bottom right) PCLN. Missing
points correspond to negative values.

10.3 Order-Sign Imbalance

For a finite event-time window of size N, consider the order-sign imbalance

1
N

N∑
t=1

εt.
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The long-memory property of the εt series has an important consequence on the
behaviour of this quantity. We will assume here and below that buy and sell market
orders are such that, unconditionally, E[ε] = 0. For short-memory processes, the
amplitude of the fluctuations of the order imbalance in a window of size N scale
as 1/

√
N for large N. More formally,

V

⎡⎢⎢⎢⎢⎢⎣ 1
N

N∑
t=1

εt

⎤⎥⎥⎥⎥⎥⎦ :=
1
N
+

2
N

N∑
�=1

(
1− �

N

)
C(�).

When C(�) decays faster than 1/�, the second term on the right-hand side also
behaves as 1/N, and we indeed recover that the variance of the order imbalance
decays as 1/N for large N. If, however, C(�) ∼ c∞/�γ with γ < 1, then the second
term instead behaves as N−γ, and therefore dominates at large N, leading to

V

⎡⎢⎢⎢⎢⎢⎣ 1
N

N∑
t=1

εt

⎤⎥⎥⎥⎥⎥⎦ ≈N	1
2c∞

(2−γ)(1−γ)
N−γ	 N−1 (γ < 1).

Hence, the fluctuations of order-sign imbalance decay very slowly with increasing
N. This is a consequence of the persistence of order flow: although on average
there are an equal number of buy and sell market orders, in any finite window
there is likely to be an accumulation of one or the other. This is very important for
market-makers, who strive to keep a balanced inventory, because these long-range
autocorrelations make their job more difficult (see Sections 1.3 and 17.2).

Another way to highlight the problem caused by order-flow correlations is to
assume that each market order on average pushes the price by a small amount
G× εt. As we will discuss in detail in Chapter 11, this is called price impact: buy
orders tend to push the price up and sell orders tend to push the price down. If this
impact was permanent, the mid-price m� would evolve according to

m� =m0 +G
�−1∑
t=0

εt +

�−1∑
t=0

ξt,

where ξt is an independent noise term (with variance Σ2, say) that models all the
other possible causes of price changes. For γ < 1, the variogram of price changes
(see Section 2.1.1) would then be

V(�) :=V[m� −m0] ≈�	1
2c∞G2

(2−γ)(1−γ)
�2−γ +Σ2�.

Within our simple framework, the price would therefore be super-diffusive (i.e. the
variogram would grow faster than linearly with � for γ < 1). In other words, the
long memory in the order signs would create trends in the price trajectory, because
buyers (or sellers) consistently push the price in the same direction for long
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periods of time. This is at odds with empirical data, which suggests that the above
picture is inadequate. As we discuss in Chapter 13, the resolution of this apparent
efficiency paradox can be found within the framework of the propagator model.
In other words, the removal of the order-flow correlations is the result of the
counter-balancing role of liquidity providers (see also Section 16.2.1).

10.4 Mathematical Models for Persistent Order Flows

10.4.1 Herding versus Splitting

What causes the autocorrelations in market order signs? Intuitively, two possi-
bilities come to mind. The first possibility is herding, in which different market
participants submit orders with the same sign. For example, a group of market
participants could observe the arrival of a buy market order and infer that there is
an active buyer interested at the current price. The group of market participants
may decide to join the bandwagon, and create many more buy market orders. This
behaviour can cascade (similarly to the Hawkes mechanism that we discussed in
Chapter 9) and thereby lead to long sequences of trades in the same direction.

The second possibility is order-splitting, in which market participants who
wish to execute large trades split their intended volume into many smaller orders,
which they then submit incrementally. We will discuss why this splitting should
occur in real markets in Section 10.5. Clearly, such activity could also lead
to long sequences of orders with the same signs, and could therefore cause
autocorrelations in the order-sign series.

In the remainder of this section, we will consider two mathematical models:
one of herding and one of order-splitting. We will discuss how to calibrate each
of these models to empirical data, discuss the autocorrelation structures that each
model predicts, then use these results to infer the relative adequacy of these models
for explaining the autocorrelations that occur in real markets.

10.4.2 A Model for Herding

In this section, we introduce a family of models called discrete auto-regressive
(DAR) processes,4 which can be regarded as discrete analogues of Hawkes
processes. A DAR process is constructed as follows. The sign εt at time t is thought
of as the “child” of a previous sign at time t− �, where the distance � is a random
variable distributed according to a certain discrete distribution K(�), with

∞∑
�=1

K(�) = 1. (10.4)

4 These processes are sometimes called integer-value auto-regressive (INAR) processes.
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For a given value of k > 0, if K(�)≡ 0 for all � > k, the model is called DAR(k), and
involves only k lags. Once the mother sign is chosen in the past, one posits that:

εt = εt−� with probability p,

εt = −εt−� with probability 1− p, (10.5)

for some constant p < 1.
This is a “copy-paste” model for trades: it assumes that a trader trading at time

t selects a previous market order that occurred some � steps in the past (where � is
chosen according to the probability distribution K(�)), and either copies the sign of
that market order (with probability p) or goes against the sign of that market order
(with probability 1− p).

In the stationary state, the signs +1 and −1 are equiprobable, and the
autocorrelation function C(�) obeys the following Yule–Walker equation:5

C(� ≥ 1) = (2p− 1)
∞∑

n=1

K(n)C(�− n); C(0) = 1. (10.6)

There is therefore a one-to-one relation between K(�) and C(�), which allows one
to calibrate the model, much as for Hawkes processes (see Section 9.3.5). Note that
in the empirical case, where C(�) decays as a power-law �−γ with exponent γ < 1,
one can show (as in the corresponding Hawkes critical case) that K(�)∼ �(γ−3)/2 for
large �, together with p ↑ 1 (compare with Equation (9.26)).

By construction, the conditional expectation of εt, given the past history of
signs, is

ε̂t = (2p− 1)
∞∑
�=1

K(�)εt−�. (10.7)

Therefore, the best predictor of the next sign in a DAR processes is a linear
combination of the past signs. This result will turn out to be useful in Chapter 13.

10.4.3 A Model for Large Metaorders

An alternative model for the long-range correlation of order signs analyses the
consequence of large, incrementally executed trading decisions. This model was
originally proposed by Lillo, Mike and Farmer (LMF) in 2005.6

The LMF model assumes that the long memory in market order signs comes
from very large orders that need to be split and executed slowly, over many
individual trades. The underlying parent order is called a metaorder. It is well

5 Note the similarity with the corresponding Equation (9.15) in the context of Hawkes processes.
6 See: Lillo, F., Mike, S., & Farmer, J. D. (2005). Theory for long memory in supply and demand. Physical

Review E, 71(6), 066122. Our presentation differs slightly in a few areas to simplify the mathematics, but is
otherwise similar to theirs.
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known that the amount of assets under management across different financial
institutions is very broadly distributed, perhaps itself with a power-law tail.
Therefore, if we assume that the size of a metaorder mostly depends on the size of
the asset manager or mutual fund from which it originates, then we can reasonably
expect the size of these metaorders to be power-law distributed as well.

The LMF model is a stylised model of a market, in which a fixed number M
of independent metaorders are being executed at any instant of time. Each active
metaorder i= 1, . . . ,M is characterised by a certain sign εi and certain termination
rate κi ∈ (0,1] drawn independently, for each metaorder, from a certain distribution
ρ(κ). At each discrete time step, one metaorder (say i) is chosen at random. Once
chosen, the metaorder is either terminated (with probability κi), or has another unit
executed (with probability 1 − κi).7 If terminated, the metaorder is replaced by a
new metaorder with its own sign and termination rate. If it has a unit executed,
the metaorder generates a market order with sign εi. Since the signs of metaorders
are assumed to be independent, then for each � ≥ 1, the value of the correlation
function C(�) is equal to the probability that a market order at time t and t + �
belong to the same metaorder. All other cases average to zero and do not contribute
to C(�).

Given that trade t belongs to a metaorder with termination rate κ, what is the
probability that trade t + � belongs to the same metaorder? Since the process is
Markovian, this probability is given by

(
1− κ

M

)�
× 1− κ

M
,

because the probability for the metaorder to disappear is κ/M at each step, and the
probability that the order at time t+ � belongs to the same metaorder as the order
at time t is 1/M. Similarly, the probability that a metaorder with termination rate κ
remains active for a total number of time steps exactly equal to L is

P (L|κ) =
(
1− κ

M

)L−1 κ

M
.

Finally, the probability P(κ(MOt) = κ) that a market order at a randomly chosen
time belongs to a metaorder with termination rate κ and duration L is proportional
to ρ(κ) and to L×P(L|κ), since the longer a metaorder is, the more likely it is to be

7 In contrast to the original LMF model, we assume that when a trader submits a chunk of a metaorder, this
action does not diminish the remaining size of their metaorder. Therefore, in our presentation, no metaorders
ever diminish to size 0. Instead, we assume that traders simply stop executing their metaorders with a fixed rate.
We make this simplification because it greatly simplifies the algebra involved in deriving the model’s long-run
behaviour.
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encountered.8 Hence

P(κ(MOt) = κ) =
1
Z
ρ(κ)

∞∑
L=1

LP (L|κ) ,

where Z is a normalisation constant, such that∫ 1

0
dκP(κ(MOt) = κ) = 1. (10.8)

Putting everything together, one finally arrives at an exact formula for C(�), as
the probability for the order at time t and the order at time t+ � belong to the same
metaorder:

C(�) =
1

MZ

∫ 1

0
dκρ(κ) (1− κ)

∞∑
L=1

LP (L|κ)
(
1− κ

M

)�
. (10.9)

To make sense of these formulas, we will first make some extra assumptions. First,
we will assume that the number of active metaorders is large, implying κ/M� 1,
which allows us to obtain the unconditional probability that a metaorder remains
active for exactly L steps as:

P(L) =
∫ 1

0
dκρ(κ)P (L|κ) ≈L	1

1
M

∫ 1

0
dκκρ(κ)e−κL/M.

Second, we will assume that ρ(·) can be written in the form ρ(κ)= ζκζ−1 with ζ > 1.
This leads to:

P(L) ≈L	1 ζ
2Γ[ζ]

Mζ

L1+ζ
.

Assuming that each market order has a size υ0, this power law for L leads to a
power-law decay of the distribution of the size Q = υ0L of metaorders, which is
the initial motivation of the model and justifies our choice for ρ(κ).

Within the same approximation,

E[L] =
∞∑

L=1

LP (L|κ) ≈ κ

M

∫ ∞

0
dL Le−κL/M ≈ M

κ
, (10.10)

and hence, using the normalisation condition from Equation (10.8),

Z = M
∫ 1

0
dκ

1
κ
ρ(κ) = M

ζ

ζ − 1
. (10.11)

Finally, from Equation (10.9), for �	 1,

C(�) ≈ 1
Z

∫ 1

0
dκ

1− κ
κ

ρ(κ)e−κ�/M ≈�	M Γ[ζ]
Mζ−2

�ζ−1
,

8 The sum over all L of L×P(L|κ) must be convergent for the model to be well defined and stationary.
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where the right-hand side is now in the form c∞�−γ, as in Equation (10.2). Using
this notation, this model produces a power-law decay for the autocorrelation of the
signs with an exponent γ = ζ − 1. Since the decay exponent γ must be positive,
one concludes that ζ > 1. In order to reproduce the empirical value of γ � 1/2, the
model requires the underlying metaorder sizes to be distributed roughly as L−1−ζ

with ζ = 3/2.
Clearly, the assumption that the number of active metaorders M is fixed

and constant over time is not realistic. However, it is not crucial, because the
relation γ = ζ − 1 is robust and survives in situations where M fluctuates in
time. A hand-waving argument for this is as follows: the probability that two
orders separated by � belong to the same metaorder (and contribute to C(�)) is
proportional to the probability that they both belong to a metaorder of size larger
than �, which scales like

∫ ∞
�

dL LP(L) ∼ �1−ζ .

10.4.4 Herding or Order-Splitting?

As we discussed in Section 10.4.1, herding and order-splitting could both provide
plausible explanations for the autocorrelations in market order signs that occur
empirically. Which is more likely to be the main reason for the observed
phenomena? Although both explanations are likely to play a role, several empirical
observations suggest that the influence of order-splitting is much stronger than that
of herding.

One way to confirm this directly would be to analyse a data set that provides the
identity of the initiator of each market order. This would allow detailed analysis
of which market participant submitted which market order, and would thereby
provide detailed insight into the relative roles of herding and order-splitting.
Unfortunately, comprehensive data describing order ownership is very difficult
to obtain. However, fragmented data from brokers, consultants and proprietary
sources all confirm that order-splitting is pervasive in equity markets, futures
markets, FX markets, and even on Bitcoin markets, with a substantial fraction
of institutional trades taking several days or even several weeks to complete (see
references in Section 9.7).

In some cases (such as the London Stock Exchange (LSE), the Spanish Stock
Exchange (SSE), the Australian Stock Exchange (ASE) and the New York Stock
Exchange (NYSE)), partial information about the identity of participants can be
obtained through the code number associated with the broker who executes the
trade. This data suggests that most of the long-range autocorrelations in C(�)
originate from the same broker submitting several orders with the same sign, rather
than from other brokers joining the bandwagon. In fact, although some herding
can be detected on short time lags (e.g. for � less than about 10), the behaviour of
other brokers at large lags is actually contrarian, and contributes negatively to C(�).
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After a short spree of copy-cat behaviour, other market participants react to a flow
of buy market orders by sending sell market orders (and vice-versa), presumably
because buy orders move the price up, and therefore create more opportunities
for sellers.9 This indicates that on the time scale over which C(�) decays as a
power-law, herding is not a relevant factor.

Is there any empirical evidence to suggest that the size of metaorders is
power-law distributed, as assumed by the LMF model? Without identification
codes, this is again difficult. However, a power-law distribution with an exponent
ζ � 3/2 has indeed been reported in the analysis of block trades (traded off-book
in the upstairs market) on the LSE, in the reconstruction of large metaorders via
brokerage codes on the SSE, and in a set of large institutional metaorders executed
at Alliance Bernstein’s buy-side trading desk in the US equities market. Bitcoin
data allows a precise reconstruction of large metaorders, and suggests a smaller
exponent ζ � 1.10

10.5 Liquidity Rationing and Order-Splitting

In Section 10.4.4, we noted that a variety of empirical evidence suggests that
order-splitting is the primary cause of the observed long-term autocorrelations in
market order signs. This raises an interesting question: why would investors split
their orders in the first place, rather than submitting their desired trades as quickly
as possible, before the information edge they have (or believe they have) becomes
stale?

As we noted at the end of Chapter 1, market participants face a quandary.
Many buyers want to buy (and many sellers want to sell) quantities that are, in
aggregate, very substantial. For example, the daily traded volume for a typical
stock in an equities markets usually amounts to roughly 0.1%–1% of its total
market capitalisation. Volumes in some commodity futures or FX markets are
breathtaking. However, as we will discuss in this section, the total volume offered
for an immediate transaction at any given instant of time is typically very small.
Why is this the case? As we will argue, the answer is that most market participants
work very hard to hide their real intentions to trade. An important consequence is
then that the available liquidity at a given moment in time is rather like an iceberg:

9 See; Tóth, B., Palit, I., Lillo, F., & Farmer, J. D. (2015). Why is equity order flow so persistent? Journal of
Economic Dynamics and Control, 51, 218–239 and Tóth, B., Eisler, Z., & Bouchaud, J. P. (2017). https://ssrn.
com/abstract=2924029, for the same analysis on CFM proprietary data.

10 See: Vaglica, G., Lillo, F., Moro, E., & Mantegna, R. (2008). Scaling laws of strategic behavior and size
heterogeneity in agent dynamics. Physical Review E, 77, 0036110; Bershova, N., & Rakhlin, D. (2013).
The non-linear market impact of large trades: Evidence from buy-side order flow. Quantitative Finance, 13,
1759–1778; Donier, J., & Bonart, J. (2015). A million metaorder analysis of market impact on the Bitcoin.
Market Microstructure and Liquidity, 1(02), 1550008.
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it reveals only a small fraction of the huge underlying supply and demand. Most
of the liquidity remains latent.

10.5.1 The Buyer’s Conundrum

Imagine that after careful examination of some information, you estimate that the
price of some given stock XYZ should increase by 20% in the coming year. After
considering your portfolio and performing a suitable risk analysis, you decide to
buy 1% of the market capitalisation of XYZ. You also know that the mean daily
traded volume of XYZ is 0.5% of its market capitalisation. Even if you decide to
participate with 1

4 of that daily volume with your own trades (which is already quite
large), it will take you at least eight days to complete your desired total volume.
If we assume that daily volatility is 2%, then over eight days, the value of the
stock typically fluctuates by 2%× √8 ≈ 6%. Therefore, about one-third (6/20) of
your expected profit might evaporate during this execution period. This provides
a strong incentive to hurry through your trades as much as possible. How should
you proceed?

Frustratingly, there probably also exists a handful of other market participants
who are actively trying to offload a position in stock XYZ, and who would be ready
to sell you the full 1% at the current market price. However, you do not know who
these people are – or where to find them. Moreover, you cannot tell them that you
want to buy such a large quantity (for fear they will try to negotiate a much higher
price), and they cannot tell you that they want to sell such a large quantity (for
fear you will try to negotiate a much lower price).11 This is precisely the buyer’s
conundrum illustrated by the quote at the beginning of Chapter 1.

If 0.5% of the market cap is traded over the course of a whole day, then roughly
0.005% is traded every five minutes (neglecting intra-day activity patterns and
the opening auction and closing auction). This is roughly the volume typically
available at the best bid or ask quote for small-tick stocks; the corresponding
volume for large-tick stocks is somewhat larger, but only by a factor of about
10. Sending a market order whose volume is much larger than these numbers
is clearly a bad idea, because it would mean paying a much worse price than
the ask-price, and could possibly wreak havoc in the market (remember that
your desired metaorder size is between 20 and 200 times larger than the volume
available at the ask!). Similarly, sending a very rapid succession of smaller market
orders would presumably send a strong signal that there is a hurried buyer in the
market, and would likely cause many sellers to increase their prices.

11 In the old days, traders seeking to perform a large buy (respectively, sell) trade often commissioned a broker
to find sellers (respectively, buyers). Such traders hoped that the broker was smart enough to get a good price
while hiding their true intentions to trade. This was often a long, drawn-out and possibly costly process, with
little transparency. However, even when using a broker, information leakage remained a costly consideration.
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Rather than removing liquidity, how about instead contributing to liquidity by
posting a very large limit order at or close to the bid-price? Unfortunately, this
does not work either, because observing an unusually large limit order also signals
a large buying interest. This influences both buyers (who are now tempted to buy
at the ask-price rather than hoping to achieve a better price by placing their own
limit orders) and sellers (who think that it might be a bad idea to sell now if the
price is likely to go up, as suggested by the new limit order arrival). In fact, limit
orders – which are often described as “passive” because they provide liquidity –
can impact prices considerably.

The so-called flash crash of 6 May 2010 provides an example of the possible
dangers of submitting unusually large limit orders. On this day, an asset manager
decided to sell 75,000 S&P E-mini contracts (representing about 8% of the typical
daily volume) using several huge sell limit orders.12 The appearance of such an
enormous volume in an already agitated market created a sudden drop of liquidity
on the buy-side of the LOB and a rapid decline of prices that reached −9% after
a few minutes, while also spilling over to equity markets. This is an extreme but
vivid example of how signalling a desire to buy or sell a large quantity can impact
and possibly destabilise prices, even with a purely passive behaviour. One clearly
sees how self-reinforcing liquidity droughts can appear in financial markets. In
other words, even limit orders that do not directly remove any liquidity from the
market can indirectly generate a liquidity crisis.

In summary, as a buyer who seeks to purchase a very large quantity of an asset,
you have no other realistic choice than to split your desired trade into many small
pieces and execute them incrementally, over a period which might span several
days or even months. Intuitively, the probability of revealing information increases
with the size of a (limit or market) order, because smaller orders are more likely
to go unnoticed while larger orders are more likely to attract attention. Therefore,
the information leakage cost of an order is expected to increase with its volume
(relative to the available liquidity). Of course, the same arguments hold for sellers
as well. In both cases, these actions are consistent with the idea that market
participants’ execution of large metaorders can cause long-range autocorrelations
in the observed order flow.

10.5.2 Metaorder Execution

In practice, it is difficult to manually execute a large metaorder over a long time
period in an efficient way. Therefore, execution algorithms are now routinely used
to perform this task. These algorithms are either built in-house by asset managers,

12 See: Kirilenko, A. A., Kyle, A. S., Samadi, M., & Tuzun, T. (2017). The flash crash: High frequency trading
in an electronic market. The Journal of Finance. doi:10.1111/jofi.12498.
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or proposed by brokers who sell execution as a service (with a fee!). We now
provide a brief description of what these algorithms or brokers attempt to achieve.
We also return to this question, in the context of optimal execution, in Chapter 21.

Some common execution schedules are:

• The time-weighted average price (TWAP) benchmark: TWAP execution
aims to achieve an average execution price that is as close as possible to the
time-weighted average price available in the market during a specified period
(typically one trading day).

• The volume-weighted average price (VWAP) benchmark: VWAP execution
aims to achieve an average execution price that is as close as possible to the
volume-weighted average price available in the market during a specified period
(typically one trading day).

• The Almgren–Chriss optimal schedule: This algorithm aims to find an
execution strategy that minimises a combination of trading costs and the variance
of the difference between the execution price and a given reference price (such
as the price at the open). We discuss this algorithm in more detail in Chapter 21.

Intuitively, VWAP reflects that large volumes should be more representative of
the fair price paid during the day, whereas TWAP is insensitive to the size of the
trades. Note that the TWAP and VWAP benchmarks are somewhat misleading
since they hide the impact of the executed metaorder: in the limit of a very large
metaorder dominating the market, its average execution price is very close to the
VWAP, since the VWAP is computed using the trades of the metaorder itself.
This misleadingly suggests a high-quality execution, when these benchmark prices
themselves are adversely impacted by the metaorder and actually quite far from the
decision price (such as the price at the beginning of the day). The Almgren–Chriss
algorithm attempts to correct this drawback.

One can also devise more sophisticated algorithms that take into account
the local liquidity fluctuations or short-term predictability in the price, or even
the simultaneous execution of different metaorders on different instruments. In
any case, the important conclusion is that all such execution algorithms slice
metaorders into small pieces that are executed incrementally, either as market
orders or as limit orders, and thereby result in a long-range autocorrelated order
flow.

10.6 Conclusion

The long memory of market order signs is a striking stylised fact in market
microstructure. At first sight, the effect is extremely puzzling, because it appears
to contradict the near-absence of predictability in price series. How can it be that
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one can make good predictions of the sign of a market order far in the future
without being able to predict that the price will increase or decrease over the same
time horizon? As we have discussed in this chapter, it must be the case that the
market somehow reacts to the correlated order flow in such a way that the price
becomes (approximately) statistically efficient. We will return to our discussion of
this efficiency paradox several times in the coming chapters.

In this chapter, we have also summarised evidence to support that the long
memory of order flow is a consequence of metaorder-splitting. Even in so-called
“liquid” markets, such as US large-cap stocks, investors are not faced with plentiful
liquidity. As we have argued, the volume available in the LOB is only a very small
fraction of the total volume desired for trade in the market. Therefore, the only
sensible possibility for market participants who wish to execute large trades is to
slice and dice their desired metaorders into small quantities, which they execute
incrementally over long periods of time.

An important conclusion is that at any instant of time, there are huge chunks
of metaorders that still await execution. At odds with Walras’ picture of price
formation, where the price instantaneously clears supply and demand (see
Chapter 18), markets in fact only slowly resolve the imbalance between buyers and
sellers. Therefore, the revealed liquidity in an LOB far from illuminates the true
buying and selling intentions in the market. Instead, most of the liquidity remains
latent, as we will explore in detail in Chapter 18.

Take-Home Messages

(i) The signs of arriving market orders have long-range autocorrelations.
This makes the signs of future market orders predictable, which seems
to be at odds with the (nearly) uncorrelated nature of price returns.

(ii) Empirical studies suggest that the main cause of these autocorrelations
is single investors splitting large metaorders, rather than different
investors herding.

(iii) Traders seek to minimise the information leakage that occurs when
they make their trading intentions public. Therefore, the liquidity in
an LOB is typically much smaller than the sum of all latent trading
intentions.

(iv) Due to this shortage of liquidity, investors cannot execute large
orders quickly without destabilising the market, and therefore need
to split them using execution strategies such as VWAP, TWAP and
Almgren–Chriss execution.
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Introduction

In this part, we jump into the core topic of this book: understanding price
dynamics. More specifically, we will consider the important question of how order
flows interact to form a price. In particular, how can the predictable order flow
elicited in the previous chapter produce unpredictable prices? This question will
be our core motivation throughout the remainder of the book.

As ever, we start with two fundamentals: concepts and data. We begin by
zooming out and asking questions about how market participants’ actions impact
prices, and, more broadly, the state of the market. We are immediately faced with a
difficulty: since history cannot be replayed, how can we know how an action really
affected the market? Put another way, how can we know that what we observed
was not going to happen anyway? This conundrum leads us to the necessity of
decomposing impact into two components: the reaction impact, which describes
how an action directly affects future prices, and the prediction impact, which
describes what would have happened anyway, even in the absence of the action.
The sum of reaction impact and prediction impact will correspond to the observed
impact, as measurable by an outside observer.

Because it does not require any information about the circumstances in which
trades occurred, observed impact often seems to be a natural quantity of study for
an outside observer who only has access to public data. However, upon deeper
reflection, observed impact reveals itself to be rather non-trivial. On the one hand,
some aspects behave as we would expect. For example, buy market orders push
the price up on average, sell market orders push the price down on average, and
observed impact first increases rapidly before reaching a stable plateau. On the
other hand, other aspects are much more surprising. One prominent example is
that impact scales as a concave function of order size, such that the seemingly
natural idea that this relationship should be linear actually breaks down.

In the quest for reliable measurements of impact, private data is a prerequisite.
By allowing a deconvolution of the prediction impact at the scale of the metaorder
– and thus getting rid of most spurious conditioning effects – private data offers
a reliable way to estimate how order flow dynamically affects the market. As we
will discuss, this understanding provides a solid starting point for price-formation
models, which indicate that prices move with the square root of metaorder
volumes.

This widely reported empirical phenomenon is extremely surprising, and holds
the key to unlocking several mysteries surrounding order flow and price formation.
Does such impact remain forever imprinted on the market and the price? What
does it mean for investors’ trading strategies? And how does it relate to the idea
of market efficiency? This part opens these and many other questions, which the
remainder of this book will seek to address.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316659335.016
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The Impact of Market Orders

To measure is to know. (Lord Kelvin)

In this chapter, we address the seemingly obvious notion of price impact (which
we first discussed in Section 1.3.2): buy trades tend to push the price up and sell
trades tend to push the price down. Expressed in the notation and language that
we have subsequently developed, we might also express this notion by saying that
price impact refers to the positive correlation between the sign (+1 for a buy order
and −1 for a sell order) of an incoming market order and the subsequent price
change that occurs upon or after its arrival. As we discuss in Section 11.3, these
seemingly obvious statements are indeed verified by empirical data.

Price impact is an all-too-familiar reality for traders who need to buy or sell
large quantities of an asset. To these traders, price impact is tantamount to a cost,
because the impact of their earlier trades makes the price of their subsequent trades
worse on average. Therefore, monitoring and controlling impact costs is one of the
most active and rapidly expanding domains of research in both academic circles
and trading firms.

Understanding and assessing price impact entails considering two different but
related topics. The first is how volume creates impact: how much more impact
does a larger trade cause? The second is the temporal behaviour of impact: how
much of a trade’s impact is permanent, how much decays over time, and how does
this transient behaviour unfold? We will consider both of these topics in detail
throughout this chapter. As we will discuss, both of these aspects of price impact
are far from trivial. Is a transaction not a fair deal between a buyer and a seller? If
so, which of the two is really impacting the price?

11.1 What Is Price Impact?

In much of the existing literature, there are two strands of interpretation for price
impact, which reflect the great divide between efficient-market enthusiasts (who

208
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believe that the price is always close to its fundamental value) and sceptics (who
believe that the dynamics of financial markets is primarily governed by order flow).
At the two extremes of this spectrum are the following stories:

(i) Agents successfully forecast short-term price movements, and trade accord-
ingly. This is the efficient-market point of view, which asserts that a trader
who believes that the price is likely to rise will buy in anticipation of this
price move. This clearly results in a positive correlation between the sign of
the trade and the subsequent price change(s), even if the trade by itself has
no effect on prices. In this framework, a noise-induced trade that is based on
no information at all should have no long-term impact on prices – otherwise,
prices could end up straying very far from their fundamental values, which
cannot be the case if markets are efficient. By this interpretation, if the price
was meant to move due to information, it would do so even without any trades.

(ii) Price impact is a reaction to order-flow imbalance. This is the efficient-market
sceptic view, which asserts that the fundamental value is irrelevant, at least
on short time scales, and that even if a trade reflected no information in any
reasonable sense, then price impact would still occur.
As an illustration of this viewpoint, recall the Santa Fe model (see Chapter 8),
in which all order-flow events are described by independent, homogeneous
Poisson processes. All else being held constant, then the mid-price will on
average be higher (respectively, lower) conditional on the arrival of an extra
buy (respectively, sell) market order than it would be conditional on that
market order not arriving. This effect is readily apparent in Figure 11.2, where
we plot the mean impact of a buy trade in the Santa Fe model. Clearly, there
is a well-defined and measurable price impact, even though there is no notion
of fundamental price or information in this zero-intelligence model.

Although both of the above explanations result in a positive correlation between
trade signs and price movements, they are conceptually very different.1 In the first
story, as emphasised by J. Hasbrouck, “orders do not impact prices. It is more
accurate to say that orders forecast prices.”2 Put another way, trades reveal private
information about the fundamental value, creating a so-called price discovery
process. In the second story, the act of trading itself impacts the price. In this
case, one should remain agnostic about the information content of the trades, and
should therefore speak of price formation rather than price discovery. If market

1 On this point, see Lyons, R. (2001). The microstructure approach to exchange rates. MIT Press. Lyons writes:
Consider an example that clarifies how economist and practitioner worldviews differ. The example is the
timeworn reasoning used by practitioners to account for price movements. In the case of a price increase,
practitioners will assert “there were more buyers than sellers”. Like other economists, I smile when I hear
this. I smile because in my mind the expression is tantamount to the “price had to rise to balance demand and
supply”.

2 Hasbrouck, J. (2007). Empirical market microstructure. Oxford University Press.
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participants believe that the newly established price is the “right” price and act
accordingly, “information revelation” might simply be a self-fulfilling prophecy.

As mentioned above, the Santa Fe model (see Chapter 8) provides an illustration
of the second story. In this model, the mechanism that generates impact can be
traced back to the modelling assumption that at any given time, agents submitting
orders always use the current mid-price as a reference. Any upwards (respectively
downwards) change in mid-price therefore biases the subsequent order flow in an
upwards (respectively downwards) direction. This causes the model to produce a
diffusive mid-price in the long run, but only resulting from the permanent impact
of a purely random order flow, in a purely random market.

Whether prices are formed or discovered remains a topic of much debate. At
this stage, there is no definitive answer, but because trades in modern markets
are anonymous, and because the line between real information and noise is so
blurry, reality probably lies somewhere between these two extremes. Since some
trades may contain real private information, and since other market participants
do not know which trades do and do not contain such information, it follows
that all trades must (on average) impact the price, at least temporarily. The
question of how much real information is revealed by trades is obviously crucial
in determining whether markets are closer to the first picture or the second picture.
Several empirical results suggest that the impact of random trades is similar to
that of putative informed trades (at least on the short run), and that the amount of
information per trade is extremely small (see the discussions in Chapters 13, 16
and 20).

11.2 Observed Impact, Reaction Impact and Prediction Impact

From a scientific (but slightly ethereal) point of view, one would ideally like to
assess the impact of a market order by somehow measuring the difference between
the mid-price in a world where the order is executed and the mid-price in a world
where all else is equal but where the given order is not executed. For a buy market
order, for example,

Ireact.
t+� (exect | Ft) := E [mt+� | exect,Ft]−E [mt+� | no exect,Ft] , (11.1)

where “exect” and “no exect” denote, respectively, the execution or non-execution
of the market order at time t. We call this quantity the reaction impact, because
it seeks to quantify how the market price reacts to the arrival of a given order.
In this formulation, Ft represents the state of the world at time t. In particular,
Ft contains all information that may have triggered the given buy order, but not
whether the trade is executed or not. To aid readability, we will sometimes omit
the conditioning on Ft, but it is always implicitly present in our arguments.



11.2 Observed Impact, Reaction Impact and Prediction Impact 211

The definition of reaction impact in Equation (11.1) is close in spirit to
what natural scientists would like to consider: an experiment where the system
is perturbed in a controlled manner, such that the result of that perturbation
can be cleanly observed and quantified. Unfortunately, this definition cannot be
implemented in a real financial system, because the two situations (i.e. the market
order arriving or not arriving) are mutually exclusive, and history cannot be
replayed to repeat the experiment in the very same conditions. Instead, what can
be measured in a real financial market is the observed impact:

Iobs.
t+� (exect) := E [mt+� | exect]−mt, (11.2)

where mt is the observed mid-price just before the execution occurred.
Most studies of impact focus on measuring and studying observed impact, which

is readily available ex-post in a given data set. If prices were martingales, then it
would follow that E [mt+� | no exect,Ft] is equal to mt, so observed impact would
be precisely equal to reaction impact. In real markets, however, this equality does
not hold (because Ft contains the information available to the trader, so one should
expect the price to increase on average even in the absence of his or her trade, as the
prediction motivating the trade is revealed). The amount of information contained
in Ft can be written as:

Ipred.
t+� := E [mt+� | no exect,Ft]−mt. (11.3)

We call this quantity the prediction impact, in the spirit of Hasbrouck’s view
(recalled above).3

By Equations (11.1) and (11.2), the difference between observed impact and
reaction impact is given by prediction impact:

Iobs.
t+� (exect)−Ireact.

t+� (exect) = E [mt+� | exect]−mt −E [mt+� | exect]

+E [mt+� | no exect] ,

= E [mt+� | no exect]−mt.

To recap: we have introduced three types of impact – namely, observed impact,
reaction impact, and prediction impact – which are related by the equality:

Iobs. = Ireact. +Ipred.. (11.4)

Prediction impact is very difficult to estimate empirically, because the full
information set Ft used by market participants to predict future prices is extremely

3 Note that we prefer here the term “prediction” to the term “information”, to avoid any confusion with
“fundamental information”. The latter term suggests some knowledge of the fundamental price of the asset,
whereas we prefer the agnostic view that some market participants successfully predict the future evolution of
prices, whether or not this is justified by fundamentals. For an extended discussion on this point, see Chapter 20.
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large and difficult to quantify. Reaction impact is somewhat easier to estimate, via
one of the following methods:

(i) by performing experiments where trading decisions are drawn at random,
such that Ipred.

t+� = 0 by construction (up to statistical noise);
(ii) by choosing at random whether or not to execute an order with a given predic-

tion signal (so as to measure both E [mt+� | exect,Ft] and E [mt+� | no exect,Ft]
for the same strategy but at different times t), then subtracting the latter from
the former;

(iii) ex-post, by conditioning on the order-sign imbalance of the rest of the market
between t and t + �, and using this imbalance as a proxy for the presence of
informed trading, i.e. for whether Ipred. is zero or not.4

None of these approaches are perfect. To measure anything meaningful, the first
idea requires generating a large number of random trades, which is a costly and
time-consuming experiment! A handful of studies have attempted to determine
Ireact. empirically, either by actually performing random trades or by carefully
mining existing data sets to identify specific orders for which Ipred. can be regarded
to be zero (such as trades initiated for cash-inventory purposes only). These studies
all conclude that on short time scales, the mechanical impact estimated from
random trades is to a good approximation identical to the mechanical impact
estimated from proprietary (allegedly informed) trades, or from all trades in a
given data set.5 This shows that the prediction component Ipred. (if any) is only
expected to show up at longer times, when the prediction signal that initiated the
trade is realised (see Chapter 20).

11.3 The Lag-1 Impact of Market Orders

Although all types of order-flow events (market order arrivals, limit order arrivals,
and cancellations) can impact prices, it is conceptually and operationally simpler
to first study only the impact of market orders (see Chapter 14 for an extended
discussion of the other events). One reason for doing so is that this analysis requires
only trades-and-quotes data (i.e. the time series of bid-prices bt, ask-prices at and
trade prices pt). Because we consider only market orders, in the following we
count time t in market-order time, in which we increment t by 1 for each market

4 This was suggested in Donier, J., & Bonart, J. (2015). A million metaorder analysis of market impact on the
Bitcoin. Market Microstructure and Liquidity, 1(02), 1550008.

5 See Section 14.5.2 and, e.g., Gomes, C., & Waelbroeck, H. (2015). Is market impact a measure of the
information value of trades? Market response to liquidity vs. informed metaorders. Quantitative Finance, 15(5),
773–793, and Tóth, B., Eisler, Z., & Bouchaud, J.-P. (2017). The short-term price impact of trades is universal.
https://ssrn.com/abstract=2924029.
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order arrival, and in which bt and at denote the values of the bid- and ask-prices
immediately before the arrival of the tth market order.

In high-quality trades-and-quotes data, there is an exact match between the
transaction price pt and either the bid- or the ask-price at the same time. If pt = at,
then the transaction is due to an incoming buy market order (which we label with
the order sign εt = +1); if pt = bt, then the transaction is due to an incoming
sell market order (which we label with the order sign εt = −1). Each entry in
a trades-and-quotes data set also specifies the trade volume υt. If an incoming
buy (respectively, sell) market order’s size does not exceed the volume at the
best ask (respectively, bid) quote, then υt is the full size of the incoming market
order. If the volume of the incoming market order exceeds the volume at the ask
(respectively, bid) quote, further transactions will occur at higher (respectively,
lower) prices, within the limits of the market order volume and price. Any
unmatched part of the market order will remain as a limit order in the LOB, at
the price at which it was sent. Trades-and-quotes data sets typically report such
activity as different, successive transactions with identical or very similar time
stamps.

11.3.1 Unconditional Impact

The simplest measure of price impact is the mean difference between the mid-price
just before the arrival of a given market order and the mid-price just before the
arrival of the next market order.6 To align activity for buy and sell market orders,
our general definition of impact must also incorporate the order sign εt. Recalling
that mt denotes the mid-price immediately before the arrival of the tth market order,
we define the lag-1 unconditional impact as

R(1) := 〈εt · (mt+1 −mt)〉t, (11.5)

where the empirical average 〈·〉t is taken over all market orders regardless of their
volume and regardless of the state of the world (including the LOB) just before
the transaction. We could of course perform more precise measurements of price
impact in specific situations by also conditioning on extra variables, but for now
we consider the general definition in Equation (11.5).

Table 11.1 lists several statistics related to price impact. For all stocks, it is
clear that R(1) > 0 with strong statistical significance.7 This demonstrates that

6 The choice of the mid-price mt as the relevant reference price is the simplest, but is not necessarily the most
adequate. For large-tick stocks, in particular, we have seen in Section 7.2 that the volume imbalance I is a
strong predictor of the sign of the future price change, so a better reference price could be defined as m̃t =
p+(I)at + p−(I)bt . Throughout the book, however, we stick with the mid-price mt .

7 Indeed, from the last column of Table 11.1, the total number of events used to compute R(1) is of the order of
106, which leads to a relative standard error of less than 1%.
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Table 11.1. The average spread just before a market order, 〈s〉; the lag-1
response functions, R(1) (all market orders), R1(1) (price-changing market
orders) and R0(1) (non-price-changing market orders); the standard
deviation of price fluctuations around the average price impact of a market
order, ΣR =

√V(1)−R(1)2, all measured in dollar cents; the fraction of
market orders that immediately change the price, P[MO1]; and the number
of market orders observed between 10:30 and 15:00 during each trading
day, NMO, for 10 small- and large-tick stocks during 2015.

〈s〉 R(1) R1(1) R0(1) ΣR P[MO1] NMO

SIRI 1.06 0.058 0.516 0.006 0.213 0.112 623
INTC 1.08 0.246 0.769 0.029 0.422 0.293 4395
CSCO 1.09 0.206 0.735 0.022 0.386 0.256 3123
MSFT 1.09 0.276 0.769 0.039 0.441 0.322 7081
EBAY 1.10 0.348 0.745 0.059 0.502 0.419 3575
FB 1.21 0.481 0.818 0.124 0.674 0.514 10703
TSLA 12.99 2.59 3.79 0.403 4.49 0.649 3932
AMZN 21.05 3.63 5.57 0.597 6.38 0.618 4411
GOOG 26.37 3.97 6.65 0.644 7.62 0.557 3710
PCLN 94.68 15.30 24.97 2.17 28.77 0.579 1342

a buy (respectively, sell) market order is on average followed by an immediate
increase (respectively, decrease) in mt. We also point out three other interesting
observations:

(i) For small-tick stocks, the value of R(1) is proportional to the mean spread
〈s〉t (see also Figure 11.1). In other words, the scale of mid-price changes
induced by market order arrivals is of the same order as the bid–ask spread
st. This turns out to capture a profound truth that we already alluded to
in Section 1.3.2, and on which we will expand in Chapter 17 below. In a
nutshell, this linear relation follows from the argument that market-making
strategies must be roughly break-even: market-makers attempt to earn the
bid–ask spread s, but face impact costs due to the adverse price move after
a market order. The relation R(1) ∝ 〈s〉t means that, to a first approximation,
adverse selection is compensated by the spread (see Chapters 16 and 17 for
an extended discussion of this point).

(ii) For large-tick stocks, the average spread is bounded below by one tick, so
the linear relationship saturates. However, R(1) itself is not bounded, because
the proportion of trades that result in a one-tick price change may become
arbitrarily small, resulting in a small average impact. In this situation, the
market-making problem becomes more subtle and requires study of the full
queuing systems (see Chapter 17).
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Figure 11.1. (Left panel) Average spread 〈s〉 versus the lag-1 impactR(1), for 120
stocks traded on NASDAQ, and (right panel) similar plot but with R(1) adjusted
for the lag-1 correlation C(1) in the market order flow (see Chapter 17 for a
theoretical justification).

(iii) There is a substantial amount of noise around the mean impact R(1). One way
to measure this dispersion is to calculate the lag-1 variogram of the mid-price:

ΣR :=V(1)− [R(1)]2; V(1) = 〈(mt+1 −mt)
2〉.

As is clear from Table 11.1, the magnitude of the fluctuations is larger than
the mean impact itself. As noted in (ii) above, some market orders do not
change the price at all, others trigger large cancellations and hence have a
very large impact, and some are even followed by a price change in the
opposite direction! This highlights that R(1) does not simply measure the
simple mechanical effect of the market order arrival, but instead incorporates
the full sequence of other limit order arrivals and cancellations that occur
between two successive market order arrivals.

There is no reason to limit our definition of price impact to the lag-1 case. For
any � > 0, we can easily extend the definition from Equation (11.5) to the general
case:

R(�) := 〈εt · (mt+� −mt)〉t. (11.6)

The function R(·) is called the response function.
Figure 11.2 shows the shape of the response function for four stocks in our

sample. In each case, R(�) rises from an initial value R(1) to a larger value R∞ =
R(�→∞), which is 2–5 times larger than the initial response R(1). This occurs as
a result of the autocorrelations in market order signs, which tend to push the price
in the same direction for a while (see Section 13.2.1). This illustrates an important
point, which we will return to in the next chapter: one should not confuse the
response function with the mechanical impact of an isolated random trade. In the
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Figure 11.2. Response function R(�) in market order event-time, for (circles)
INTC, (diamonds) CSCO, (squares) TSLA, (triangles) PCLN and (dashed curve)
in the simulated Santa Fe model. The parameters of the Santa Fe model
correspond to TSLA.

language of the previous section, there is an information contribution Ipred. that
comes from the autocorrelation of the market order signs. Put another way, the
response function R(�) also contains the reaction impact of future trades, which,
as we saw in Chapter 10, are correlated with the present trade.

11.3.2 Conditioning on Trade Volume

So far, we have considered the impact of a market order irrespective of its volume.
However, it seems natural that large market orders should somehow impact prices
more than small market orders. As we discussed in Section 10.5.1, one possible
reason that this should be the case is information leakage: if market orders reveal
information, larger trades may indeed lead to larger subsequent price moves.
Another possible reason is the purely statistical observation that a larger market
order is more likely to consume all the available volume at the opposite-side best
quote, and is therefore more likely to lead to a price change both instantaneously
(by directly changing the state of the LOB) and subsequently (by causing other
traders to modify their subsequent order flow).

Both of these intuitive arguments are indeed confirmed by empirical data.
However, the effect of volume on impact is much weaker than might be naively
anticipated. In fact, after normalising the volume of a market order υ by the mean
volume at the opposite-side best quote V̄best, one finds that the volume-dependence
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Figure 11.3. (Left panel) Lag-1 impact response function R(υ,1) for INTC and
CSCO, as a function of normalised market order volume (where we normalise by
the average volume at the same-side queue). Observe the non-monotonic effect
for small υ. (Right panel) The same plot on a semi-logarithmic scale, for the ten
stocks in Table 11.1. Small-tick stocks (with a large R(υ,1)) do not exhibit any
significant dependence on υ.

of the immediate impact is actually strongly sub-linear:

R(υ,1) := 〈εt · (mt+1 −mt)|υt = υ〉t � A

(
υ

V̄best

)ζ
〈s〉t, (11.7)

where A is a constant of order 1 and ζ is an exponent that takes very small values.
For the stocks in our sample, we find values ζ � 0− 0.3 (see Figure 11.3). In other
words, the lag-1 impact of a single market order is a strongly concave function of
its volume, and perhaps even a constant for small-tick stocks. As we discuss in the
next section, this concavity mostly comes from a conditioning bias called selective
liquidity taking.

Note a curious feature for large-tick stocks: the impact curve is non-monotonic
for small volumes, such that small market orders seem to have an anomalously
high impact. This is related to volume imbalance effects, as noted in Section 7.2:
when the volume in one of the two queues is very small compared to the volume
in the opposite queue, it is highly probable that a small market order will grab the
small remaining quantity, resulting in a one-tick price jump.

11.3.3 Selective Liquidity Taking

Whether or not a given market order has instantaneous impact depends not only on
the size of the market order, but also on the state of the LOB at its time of arrival.
Therefore, attempting to analyse impact only as a function of market order size
could be misleading. At the very least, one should distinguish between aggressive
market orders and non-aggressive market orders.
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Recall from Section 10.2 that we use the notation MO1 to denote market orders
that consume all volume available at the best opposite quote, which leads to an
immediate price move, and MO0 to denote market orders that do not. We introduce
a similar notation for impact:

R1(1) := 〈εt · (mt+1 −mt)|πt =MO1〉t,
R0(1) := 〈εt · (mt+1 −mt)|πt =MO0〉t.

Table 11.1 lists the empirical values of R1(1) and R0(1) for the stocks in our
sample. As might be expected, R1(1) > R0(1), but note that even for MO0 events,
the response of the market is strictly positive: R0(1) > 0. This is due to the
fact that there is a non-zero probability for the non-executed limit orders at the
opposite-side best quote to be cancelled before the next market order arrival, and
thereby to produce a price change in the direction of the initial trade. Clearly, one
has

R(1) = P[MO0]R0(1)+P[MO1]R1(1),

where P[MO1] is the probability that the market order is aggressive and P[MO0] is
the probability that it is not (such that P[MO1] = 1−P[MO0]).

It is interesting to study the distribution of market order volumes, conditioned to
the volume at the opposite-side best quote Vbest at their time of arrival.8 Figure 11.4
shows the mean size of market order arrivals for given values of Vbest. The plot
suggests that these mean order sizes grow sub-linearly, and appear to be well
described by the power-law

〈υ|Vbest〉 ∝ Vχ
best; χ � 0.6.

Figure 11.5 shows the distribution f (x) of the ratio x = υ/Vbest. We observe
that f (x) mostly decreases with x and behaves qualitatively similarly for large-
and small-tick stocks. Note also the important round-number effects: f (x) has
spikes when the market order size is equal to simple fractions of Vbest. These
round-number effects persist even when the market order is larger than the
available volume (corresponding, for example, to Vbest = 100, υ= 200). The largest
spike occurs for x = 1, which means that traders submit a significant number of
market orders with a size that exactly matches the available volume at the best.
Finally, only few market orders are larger than the available volume at the best.
In other words, when traders submit market orders, they often adapt their order
volumes to the volume available at the opposite-side best quote. This phenomenon
is known as selective liquidity taking: the larger the volume available at the
opposite-side best quote, the larger the market orders that tend to arrive.

8 As is clear from Section 4.2, Vbest has a strong intra-day pattern. It can also fluctuate considerably from one
trading day to the next.



11.3 The Lag-1 Impact of Market Orders 219

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3

υ
 / V

be
st

Vbest / Vbest

INTC
CSCO

y ∼ x0.6

¯

¯

Figure 11.4. Average market order size (normalised by the average queue
volume) versus the available volume at the same-side best quote (normalised by
the average queue volume) for INTC and CSCO. For small queue volumes, the
relationship roughly follows a power-law with exponent 0.6 (dashed curve), and
saturates for large queue volumes.

P
ro

ba
bi

li
ty

de
ns

ity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

υ / Vbest

INTC
CSCO
TSLA
PCLN
Other

10−3

10−4

10−2

10−1

100

10−5

Figure 11.5. Empirical distribution of the fraction of executed queue volume
q/Vbest for the ten stocks in our sample.

One can make use of a simple caricature to understand the strong concavity
of R(υ,1) as a function of υ, as we reported in the previous section (see
Equation 11.7). Assume for simplicity that R0(υ,1) ≈ 0 and R1(υ,1) ≈ I, such
that market orders with a volume less than that of the opposite-side best quote
have no impact at all, while market orders with a volume that matches that of
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the opposite-side best quote impact the price by a fixed quantity I (which we
also assume to be independent of volume and equal to some fixed fraction of the
spread). In other words, we assume that market orders never eat more than one
level, and that the impact of new limit orders and cancellations can be neglected.
If this were the case in real markets, then it would follow that

R(υ,1) ≈ P[MO1|υ]I.
In real markets, P[MO1|υ] is an increasing function of υ, is zero when υ = 0 and
converges to 1 when υ→∞. The resulting R(υ,1) is therefore a concave function.
In fact, using Bayes rule,

P[MO1|υ] =
∫ υ

0
dVbest P(Vbest|υ) =

∫ υ
0

dVbest P(υ|Vbest)P(Vbest)∫ ∞
0

dVbest P(υ|Vbest)P(Vbest)
.

Now suppose that the conditional distribution P(υ|Vbest) is an arbitrary function of
x = υ/Vbest and P(Vbest) is itself a power-law. In this case, one finds that P[MO1|υ]
is independent of υ, leading to a volume-independent impact R(υ,1), as indeed
observed for small-tick stocks (see Figure 11.3).

The conclusion of this toy calculation is that the strong concavity of lag-1 impact
as a function of market order volume is (at least partially) a conditioning effect
caused by the fact that most large market order arrivals happen when there is a
large volume available at the opposite-side best quote.

11.3.4 Conditioning on the Sign of the Previous Trade

As we have shown throughout this chapter, market orders clearly impact the price
in the direction of the trade. However, in Chapter 10 we showed that market order
signs are autocorrelated. As illustrated by Table 11.2, the lag-1 autocorrelation
coefficient C(1) = 〈εtεt−1〉 is quite large. Given that market orders impact prices,
it might seem reasonable to expect that the autocorrelation in market order signs
should also lead to some predictability in price moves.

If the lag-1 impact R(1) was independent of the past, then conditional on the
last trade being a buy, the next price change would also be on average positive.
Conditional on the last trade being a buy, the probability that the next trade is
also a buy is p+ = (1+C(1))/2, and the probability that the next trade is a sell is
p− = (1−C(1))/2. Therefore, it follows that:

〈mt+1 −mt|εt−1〉naive = p+R(1)− p−R(1) =C(1)R(1). (11.8)

In this naive view, the presence of sign autocorrelations should thus lead to
price predictability. However, price changes in financial markets are difficult to
predict, even at high frequencies, so this naive picture is likely to be incorrect. To
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Table 11.2. The values of C(1), f , R+(1)
and R−(1) for the ten stocks in our sample.
Impact is measured in dollar cents.

C(1) R+(1) R−(1) f

SIRI 0.93 0.064 0.027 0.90
INTC 0.59 0.26 0.22 0.61
CSCO 0.66 0.22 0.17 0.71
MSFT 0.57 0.29 0.25 0.56
EBAY 0.48 0.36 0.33 0.47
FB 0.37 0.47 0.51 0.31
TSLA 0.69 2.53 2.84 0.52
AMZN 0.72 3.61 4.17 0.57
GOOG 0.75 3.94 4.87 0.60
PCLN 0.78 15.67 16.99 0.63

quantify this small level of predictability, let f denote the actual lag-1 mid-price
predictability as a fraction of the above naive predictability. We define the fraction
f as:

〈εt−1 · (mt+1 −mt)〉 := fC(1)R(1).

Table 11.2 shows the values of f for the stocks in our sample. In all cases, the
value of f is smaller than 1, which is the value that the above naive picture would
suggest.

How should we understand this empirical result? A first step is to note that a
buy trade in fact impacts the mid-price less if it follows another buy trade than if
it follows a sell trade. More formally, we define two impacts, as follows:

R+(1) := E[εt · (mt+1 −mt)|εtεt−1 = +1];

R−(1) := E[εt · (mt+1 −mt)|εtεt−1 = −1].
(11.9)

By taking the product of successive trade signs, the conditioning selects successive
trades in the same direction for R+(1) and in the opposite direction for R−(1).

As shown by Table 11.2, it holds that R+(1) <R−(1) for small-tick stocks.9 This
illustrates an important empirical fact: the most likely outcome has the smallest
impact. For example, if the previous trade is a buy, then due to the autocorrelation
of market order signs, the next trade is more likely to also be a buy. When the next
trade occurs, its impact will, on average, be smaller if it is indeed a buy than if it is

9 For large-tick stocks, the situation is inverted as a consequence of the influence of volume imbalance on future
price changes. The unpredictability argument is no longer about the mid-price mt but instead about the modified
mid-price m̃t defined in Footnote 6.
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a sell. This mechanism, which is a crucial condition for market stability, is called
asymmetric dynamical liquidity.

Of course, considering the lag-1 autocorrelation is only the tip of the iceberg. As
we saw in Chapter 10, market order signs actually have long-range autocorrelations
that decay very slowly. Therefore, the sign of the next trade can be better predicted
by looking at the whole history of trades, and not only the single most recent trade,
as would be the case if trade signs were Markovian.10 In Chapter 13, we extend
the analysis from this section to incorporate autocorrelations at larger lags and to
build a full theory of the delayed impact of market orders.

11.4 Order-Flow Imbalance and Aggregate Impact

To reduce the role of microstructural idiosyncrasies and conditioning biases
(such as selective liquidity taking), price impact is often measured not at the
trade-by-trade level (as we have done so far in this chapter), but instead over
some coarse-grained time scale T . In many practical applications, choices of T
range from about five minutes to a full trading day. In this framework, the goal is
to characterise the positive correlations between aggregate signed order flow and
contemporaneous price returns.

Consider all transactions that occur in a given time interval [t, t + T ), for some
T > 0 and where t and T are expressed in either event-time or calendar-time.
Throughout this section, we again choose to work in market order time, whereby
we advance t by 1 for each market order arrival. For each n ∈ [t, t + T ), let εn

denote the sign of the nth market order and let υn denote its volume. The order-flow
imbalance is:

ΔV =
∑

n∈[t,t+T )

εnυn.

If ΔV > 0, then more buy volume arrives in the given interval than does sell volume,
so one expects the price to rise.11

The aggregate impact is the price change over the interval [t, t+T ), conditioned
to a certain volume imbalance:

R(ΔV,T ) := E

⎡⎢⎢⎢⎢⎢⎢⎣mt+T −mt|
∑

n∈[t,t+T )

εnυn = ΔV

⎤⎥⎥⎥⎥⎥⎥⎦ . (11.10)

This quantity can be studied empirically using only public trades-and-quotes data.
If T = 1, then ΔV is simply the volume of the single market order at time t, and

10 This Markovian assumption is precisely the starting point of the MRR model that we discuss in Section 16.2.1.
11 This market scenario is often described as there being “more buyers than sellers”; in reality, of course, there is

always an equal number of buy orders and sell orders for each transaction. What is usually meant by the phrase
is that there are more buy market orders due to aggressive buyers, but even this is only a rough classification
because buyers might also choose to use limit orders to execute their trades (see the discussion in Section 10.5.1
and Chapter 21).
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one recovers the definition of lag-1 impact

R(ΔV,1) ≡ R(υ = ΔV,1).

Therefore, by the same arguments as in Section 11.3.2, R(ΔV,1) is a strongly
concave function of ΔV .

How does the behaviour of R(ΔV,T ) change for larger values of T? Empirically,
when T increases, the dependence of R(ΔV,T ) on the volume imbalance becomes
closer to a linear relationship for small ΔV , while retaining its concavity for large
|ΔV |. In fact, the following empirical scaling law appears to hold for a large variety
of stocks and futures contracts:12

R(ΔV,T ) � R(1)T χ ×F

(
ΔV

VDT κ

)
, (11.11)

where VD is the daily volume and F (u) is a scaling function (see Figure 11.6) that
is linear for small arguments (F (u) ∼|u|�1 u) and concave for large arguments13

and where empirically the exponents are given by χ � 0.5− 0.7 and κ � 0.75− 1.
We will attempt to rationalise the values of these exponents in Section 13.4.3.

The slope of the linear region of R(ΔV,T ) is usually called Kyle’s lambda, in
reference to the Kyle model, which we discuss in Chapter 15. The value of this

12 See: Patzelt, F., & Bouchaud, J. P. (2018). Universal scaling and nonlinearity of aggregate price impact in
financial markets. Physical Review E, 97, 012304.

13 A possible example is F (u) ∼|u|	1 sign(u)|u|ζ with a small exponent ζ, or other functions with a similar
behaviour but that saturate for large u.
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slope is often regarded as a measure of a market’s (il-)liquidity. Using the scaling
result in Equation (11.11), it follows that Kyle’s lambda decreases with the time
interval over which it is measured:14

R(ΔV,T ) ∼|ΔV |→0 Λ(T )ΔV; Λ(T ) �Λ(1)T−(κ−χ).

Interestingly, the empirical determination of κ− χ � 0.25−0.3 is more robust and
stable across assets than χ and κ independently.

The saturation for larger values of ΔV is also interesting, but is likely to be
related to selective liquidity taking (see Section 11.3.3) for single market orders,
which is expected to persist on longer time scales T 	 1. For example, imagine
that there is an excess of sell limit orders in the LOB during the whole time interval
[t, t + T ). This will likely attract buy market orders that can be executed without
impacting the price too much. Therefore, one expects that these situations will bias
R(ΔV,T ) downwards for large ΔV , following the very same conditioning argument
that led to a concave shape for R(ΔV,1).

11.5 Conclusion

The primary conclusion of this chapter is that there exists a clear empirical
correlation between the signs of trades and the directions of price moves. Trivial as
it may sound, the mechanism underlying this behaviour is not immediately clear.
Does this phenomenon occur because information is revealed? Or does the very
occurrence of a trade itself impact prices? Generally speaking, one expects that
both effects should contribute. However, empirical data suggests that the reaction
part of impact is predominant on short to medium time scales, and is identical
for all trades irrespective of whether they are informed or not. Since trades in
modern financial markets are anonymous, it would be surprising if any distinction
(between whether or not a given trade was informed) could be made before any
genuine prediction contained in some of these trades reveals itself. By a similar
argument, one expects that the impact of trades could also explain a large fraction
of the volatility observable in real markets (see the discussion in Chapter 20).

From the point of view of this book, this is very good news! It suggests that
there is hope for modelling the reaction part of the impact, which should follow
reasonably simple principles, as we shall discuss in Chapters 13 and 19. The
prediction part of impact is of course much harder to model, since it depends on
a huge information set and on the specific strategies used to exploit mispricings.
In any case, the information content of individual trades must be very small (see

14 In the Kyle model (see Chapter 15), aggregate impact is linear and additive, so Λ(T ) must be constant and
therefore independent of T . Since order flow is assumed to be completely random in this model, the value of
the exponents corresponds to χ = κ = 1

2 in that case, and the scaling function is linear: FKyle(x) = x.
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Chapters 13, 16 and 20). Furthermore, as we will see, the decay of the reaction
impact is so slow that the distinction between transient impact (often associated
with noise trades) and permanent impact (often associated with informed trades)
is fuzzy.

Several empirical conclusions from this chapter will now trickle throughout
much of the rest of the book. For example, we saw in Section 11.3.1 that the
lag-1 impact of a market order is of the same order as the bid–ask spread.
We will investigate this from a theoretical perspective in Chapter 17. We also
saw in Section 11.3.1 that the response function R(�) is an increasing function
of � that saturates at large lags (see Figure 13.1). This can be traced back to
the autocorrelation of the trade-sign series (see Sections 13.2 and 16.2.4, and
Equation (16.22)), from which we will construct a theory for the reaction impact
of trades (see Chapter 13). In Section 11.3.4, we saw that the impact of two trades
in the same direction is less than twice the unconditional impact of a single trade.
This is due to liquidity providers buffering the impact of successive trades in the
same direction, and is a crucial condition for market stability, as we will see in
Sections 13.3 and 14.4.

Finally, we have discussed the impact of trades at an aggregate level. We saw
that small price returns are linearly related to small volume imbalances, with a
slope (called “Kyle’s lambda”) that is found to decrease with the aggregation time
scale T . We will return to this discussion in Section 13.4.3. As we discuss in the
next chapter, however, this linear impact law, obtained by a blind aggregation of all
trades, is of little use for understanding the price impact of a metaorder executed
over a time horizon T . This necessary distinction is among the most striking results
in market microstructure, and will require a detailed, in-depth discussion (see
Section 13.4.4 and Part VIII).

Take-Home Messages

(i) Trade directions are positively correlated with subsequent price
changes. There are two competing views that attempt to explain this
phenomenon: that trades forecast prices or that trades impact prices.

(ii) The observed impact of a trade can be decomposed into two
components: a reaction component, which describes how the market
reacts to the trade itself, and a prediction component, which
describes all other dynamics not directly related to the trade (e.g.
exogenous information).

(iii) Measuring the reaction impact of a given order is difficult, because
doing so would require replaying history to consider a world in
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which all else was equal except that the given order was not
submitted.

(iv) The response function describes the mean price trajectory at a given
time lag after a trade. Empirically, the response function is found
to be an increasing function of lag, starting from 0 and reaching a
plateau with a scale that is of the same order as the bid–ask spread.
Importantly, the response function must not be confused with the
reaction impact of a market order, because it also contains the impact
of future orders.

(vi) Because market order signs are strongly autocorrelated, if trades
impacted prices linearly, then prices would be strongly predictable.
This is not observed empirically. Therefore, the impact of trades
must be history-dependent. For example, a buy trade that follows
a buy trade impacts the price less than a buy trade that follows a sell
trade.

(vii) It is non-trivial to assess the dependence of impact on volumes. At
the scale of individual trades, conditioning effects lead to a strongly
concave dependence.

(viii) The aggregate impact of volume imbalance is linear for small
imbalances and saturates for large imbalances. The slope of the
linear part decreases as a power-law of the aggregation time.
However, this naive averaging only shows part of the story – as we
will see in the next chapter.
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The Impact of Metaorders

It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are.
If it doesn’t agree with experiment, it’s wrong.

(Richard P. Feynman)

In the previous chapter, we considered how the arrival of a single market order
impacts the mid-price. However, as we noted in Section 10.5.1, most traders do
not execute large trades via single market orders, but instead split up their trades
into many small pieces. These pieces are executed incrementally, using market
orders, limit orders, or both, over a period of several minutes to several days. As we
saw in the last chapter, the chaining of market orders greatly affects their impact.
Therefore, understanding the impact of a single market order is only the first step
towards understanding the impact of trading more generally. To develop a more
thorough understanding, we must also consider the impact of metaorders (defined
in Section 10.4.3).

The empirical determination of metaorder impact is an important experiment
whose results, when measured properly, are of great interest to academics,
investors and market regulators alike. From a fundamental point of view, how
does a metaorder of size Q contribute to price formation? From the point of
view of investors, what is the true cost of performing such a trade? How does
it depend on market conditions, execution strategies, time horizons, and so on?
From the point of view of regulators, can large metaorders destabilise markets? Is
marked-to-market accounting wise when, as emphasised above, the market price
is (at best) only meaningful for infinitesimal volumes?

Naively, it might seem intuitive that the impact of a metaorder should scale
linearly in its total size Q. Indeed, as we will discuss in this chapter, many simple
models of price impact predict precisely a linear behaviour. Perhaps surprisingly,
empirical analysis reveals that in real markets, this scaling is not linear, but rather
is approximately square-root. Throughout this chapter, we present this square-root
law of impact and discuss several of its important consequences.
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12.1 Metaorders and Child Orders

Assume that a trader decides to buy or sell some quantity Q of a given asset.
Ideally, the trader would like to buy or sell this whole quantity immediately, at
the market price. However, as we discussed in Section 10.5.1, unless Q is smaller
than the volume available for immediate purchase or sale at the opposite-side best
quote, then conducting the whole trade at the bid- or ask-price is not possible.
Therefore, there is no such thing as a “market price” for a trade, because such a
price can only be guaranteed to make sense for a very small Q. For the volumes
typically executed by large financial institutions, there is rarely enough liquidity in
the whole LOB to match the required quantity Q all at once. Therefore, traders
must split their desired metaorder (i.e. the full quantity Q) into many smaller
pieces, called child orders, which they submit gradually over a period of minutes,
hours, days and even months.

It is common practice for traders to decompose their trading activity into two
distinct stages:

(i) The investment-decision stage, during which the trader determines the sign ε
(i.e. buy/sell) and volume Q of the metaorder, and the desired time horizon T
over which to execute it, usually based on some belief about the future price
of the asset.

(ii) The execution stage, during which the trader conducts the relevant trades
to obtain the required quantity at the best possible price within the time
window T .

The execution stage is sometimes delegated to a broker, who seeks to achieve
specified execution targets such as VWAP or TWAP (see Section 10.5.2) by
performing incremental execution of the metaorder in small chunks. As we will
discuss further in Chapter 19, this incremental execution seeks to make use of the
gradual refilling of the LOB from previously undisclosed orders. In principle, this
should considerably improve the price obtained for the metaorder execution when
compared to submitting large market orders that penetrate deep into the LOB (and
that could even destabilise the market).

Importantly, the direction, volume and time horizon of a metaorder are
determined and fixed during the investment-decision stage. Any decision to stop,
extend or revert a metaorder comes from a new investment decision. As we
discuss later in this chapter, it is important to keep this in mind to avoid spurious
conditioning effects when measuring the impact of a metaorder.

12.2 Measuring the Impact of a Metaorder

Consider a metaorder with volume Q and sign ε. Let N denote the number of
constituent child orders of this metaorder. For i= 1,2, . . . ,N, let ti, υi and pi denote,
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respectively, the execution time, volume and execution price of the ith child order.
By definition, it follows that

N∑
i=1

υi = Q.

Because each of the N child orders are part of the same metaorder, it follows that
the sign of each child order is also equal to ε.1

As we discussed (in the context of market order impact) in Section 11.2,
the ideal experiment for measuring the impact of a metaorder would involve
comparing two different versions of history: one in which a given metaorder
arrived, and one in which it did not, but in which all else was equal. In reality,
however, this is not possible, so we must instead make do with estimating impact
by measuring quantities that are visible in empirical data.

12.2.1 The Ideal Data Set

To gain a detailed understanding of the impact of a metaorder, one would ideally
have access to some form of proprietary data or detailed broker data that lists:

• which child orders belong to which metaorders;
• the values of ti, pi, and υi for each child order; and
• whether each child order was executed via a limit order or a market order.

With access to this ideal data, it would be straightforward to construct a detailed
execution profile of a metaorder by recording the values of ti, pi and υi for
each child order. In reality, however, it is rare to have access to such rich and
detailed data, so it is often necessary to cope with less detailed data, and to impose
additional assumptions about metaorder execution.

12.2.2 Less-Detailed Data

Even in the absence of the full information described in Section 12.2.1, it is still
possible to gain insight into the impact of a metaorder, given only the following
information:

• the sign ε and total quantity Q of the metaorder;
• the time of the first trade t1 and the corresponding mid-price price m1;2

• the time of the last trade tN and the corresponding mid-price price mN . The
execution horizon T is then given by T = tN − t1.

1 We assume here that the investor does not send child orders to sell (respectively buy) when s/he wants to buy
(respectively sell). This is reasonable as any round-trip is usually costly – see Section 19.5.

2 In principle, t1 is different from the time t0 at which the investment decision is made. However, we neglect here
the short-term predictability that would lead to a systematic price change between these two times.
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In the absence of more detailed information about the execution profile of a
metaorder, we will rely on an important assumption: that, given t1 and tN , the
execution profile of the metaorder’s profile is approximately linear, such that the
cumulative volume q(t) executed up to time t is

q(t) ≈ t− t1
T

Q, q(tN) ≡ Q. (12.1)

In Section 12.2.3, we list several interesting properties of impact that can be
measured within this simple framework. However, it is important to stress that
measuringmetaorderimpactstill requiresrelativelydetaileddatathat indicateswhich
child orders belong to which metaorders. This information is not typically available
in most publicly available data, which is anonymised and provides no explicit trader
identifiers. Using such data only allows one to infer the aggregate impact as in
Section 11.4. Identifying aggregate impact with metaorder impact is misleading,
and in most cases leads to a substantial underestimation of metaorder impact.

12.2.3 Impact Path and Peak Impact

Given metaorder data of the type described in Section 12.2.2, and making the
assumptions described in that section, one can define several quantities of interest
for characterising the impact of a metaorder of total volume Q and horizon T :

(i) The average impact path is the mean price path between the beginning and
the end of a metaorder (see Figure 12.1):

Ipath(q, t− t1|Q,T ) = 〈ε · (mt −m1) | q; Q,T 〉 , (12.2)

where q is the quantity executed between t1 and t (which, by Equation (12.1),
we assume to grow approximately linearly with t). We will see later that the
conditioning on Q and T can in fact be removed if the execution profile
is linear. We introduce the notation I for the impact of a metaorder to
distinguish it from the impact I of a single market order, which we discussed
in Chapter 11.

(ii) The average peak impact of a metaorder of size Q executed over a time
horizon T is:

Ipeak(Q,T ) := 〈ε · (mN −m1) | Q〉 . (12.3)

As alluded to above, for a metaorder executed at a constant rate, it is
reasonable that there cannot be any difference between the mechanical impact
of the volume q of a partially executed metaorder and a fully executed
metaorder of volume q, since the rest of the market does not know whether the
metaorder is continuing or not. Hence, neglecting any prediction contribution
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coming from short-term signals, we expect that

Ipath(q, t− t1|Q,T ) ≈ Ipeak(q, t− t1), for all q ≤ Q, t ≤ T.

Empirical data confirms that this equality does indeed hold (see Section 12.5).
(iii) The execution shortfall C (also called execution cost or “slippage”) is the

average difference between the price paid for each subsequent child order
and the decision price (which we assume to be the price paid for the first
child order; see previous footnote). Neglecting the spread contribution, one
writes

C (Q,T ) =

〈∑
i

ευi · (mi −m1)
∣∣∣∣∣Q〉

. (12.4)

This is the volume-weighted average premium paid by the trader executing
the metaorder.

(iv) Impact after-effects describe the mean price path for t > tN (i.e. after the
metaorder has been fully executed; see Figure 12.1). At any given t > tN ,
the impact after-effect of a metaorder can be decomposed into a transient
component Itrans.(Q, t) and a permanent component I∞(Q), such that, when
t > T ,

Ipath(Q, t) = Itrans.(Q, t)+I∞(Q), (12.5)

with
Itrans.(Q, t→∞) = 0; I∞(Q) = lim

t→∞I
path(Q, t).

Note that the permanent component I∞(Q) receives two types of contribu-
tion:
(a) One coming from the prediction signal at the origin of the metaorder,

called the prediction impact in Section 11.2;
(b) The other coming from the possibly permanent reaction of the market to

all trades, even uninformed. This contribution is nicely illustrated by the
zero-intelligence Santa Fe model, for which indeed I∞(Q) > 0.

For non-linear execution profiles, one should expect the impact path to depend
not only on q, but possibly on the whole execution schedule {q(t)}.

12.3 The Square-Root Law

At the heart of most empirical and theoretical studies of metaorder impact lies
a very simple question: how does the impact of a metaorder depend on its size
Q? Many models, including the famous Kyle model (see Chapter 15), predict this
relationship to be linear. Although this answer may appear intuitive, there now
exists an overwhelming body of empirical evidence that rules it out, in favour of a
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Figure 12.1. Average shape of the impact path. Over the course of its execution,
a buy metaorder pushes the price up, until it reaches a peak impact. Upon
completion, the buying pressure stops and the price reverts abruptly. Some impact
is however still observable long after the metaorder execution is completed,
and sometimes persists permanently. For real data, one should expect a large
dispersion around the average impact path.

concave, and apparently square-root dependence on Q. In this section, we discuss
the empirical basis of this so-called square-root impact law.

12.3.1 Empirical Evidence

Since the early 1980s, a vast array of empirical studies3 spanning both academia
and industry have concluded that the impact of a metaorder scales approximately
as the square-root of its size Q. This result is reported by studies of different
markets (including equities, futures, FX, options, and even Bitcoin), during
different epochs (including pre-2005, when liquidity was mostly provided by
market-makers, and post-2005, when electronic markets were dominated by HFT),
in different types of microstructure (including both small-tick stocks and large-tick
stocks), and for market participants that use different underlying trading strategies
(including fundamental, technical, and so on) and different execution styles
(including using a mix of limit orders and market orders or using mainly market
orders).

In all of these cases, the peak impact of a metaorder with volume Q is well
described by the relationship

Ipeak(Q,T ) � YσT

(
Q
VT

)δ
, (Q� VT ), (12.6)

where Y is a numerical coefficient of order 1 (Y � 0.5 for US stocks), δ is an
exponent in the range 0.4–0.7, σT is the contemporaneous volatility on the time
horizon T , and VT is the contemporaneous volume traded over time T . Note that

3 We list a wide range of such studies in Section 12.7.
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Figure 12.2. The impact of metaorders for Capital Fund Management proprietary
trades on futures markets, during the period from June 2007 to December
2010 (see Tóth et al. (2011)). We show Ipeak(Q,T )/σT versus Q/VT on doubly
logarithmic axes, where σT and VT are the daily volatility and daily volume
measured on the day the metaorder is executed. The black curve is for large-tick
futures and the grey curve is for small-tick futures. For comparison, we also show
a (dash-dotted) line of slope 1

2 (corresponding to a square-root impact) and a
(dotted) line of slope 1 (corresponding to linear impact).

Equation (12.6) is dimensionally consistent, in the sense that both the left-hand
side and the right-hand side have the dimension [% of price].

To illustrate the relationship in Equation (12.6), Figure 12.2 shows Ipeak

(Q,T )/σT vs. Q/VT for the data published in the paper by Tóth et al. in 2011,4

which corresponds to nearly 500,000 metaorders executed between June 2007 and
December 2010 on a variety of liquid futures contracts. The data suggests a value
of δ � 0.5 for small-tick contracts and δ � 0.6 for large-tick contracts, for values of
Q/VT ranging from about 10−5 to a few per cent. Several other empirical studies
of different markets have drawn similar conclusions, with δ � 0.6 for US and
international stock markets, δ � 0.5 for Bitcoin and δ � 0.4 for volatility markets
(see Section 12.7 for references). In all published studies, the exponent δ is around
1
2 , hence the name “square-root impact” that we will use henceforth.

12.3.2 A Very Surprising Law

The square-root law of metaorder impact is well established empirically, but there
are several features that make it extremely surprising theoretically. In this section,

4 Tóth, B., Lemperiere, Y., Deremble, C., De Lataillade, J. Kockelkoren, J., & Bouchaud, J. P. (2011). Anomalous
price impact and the critical nature of liquidity in financial markets. Physical Review X, 1(2), 021006.
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we summarise some of these surprising features, and highlight some important
lessons that the square-root law teaches us about financial markets.

The first surprising feature of Equation (12.6) is that metaorder impact does not
scale linearly with Q – or, said differently, that metaorder impact is not additive.
Instead, one finds empirically that the second half of a metaorder impacts the price
much less than the first half. This can only be the case if there is some kind
of liquidity memory time Tm, such that the influence of past trades cannot be
neglected for T � Tm but vanishes for T 	 Tm, when all memory of past trades is
lost. We will hypothesise in Chapter 18 that Tm is in fact imprinted in the “latent”
LOB that we alluded to above.

The second surprising feature of Equation (12.6) is that Q appears not (as might
be naively anticipated) as a fraction of the total market capitalisation M of the
asset,5 but instead as a fraction of the total volume VT traded during the execution
time T . In modern equities markets,M is typically about 200 times larger than VT

for T = 1 day. Therefore, the impact of a metaorder is much larger than if the Q/VT

in Equation (12.6) was instead Q/M. The square-root behaviour for Q� VT also
substantially amplifies the impact of small metaorders: executing 1% of the daily
volume moves the price (on average) by

√
1% = 10% of its daily volatility. The

main conclusion here is that even relatively small metaorders cause surprisingly
large impact.

The third surprising feature of Equation (12.6) is that the time horizon T does
not appear explicitly. To consider this in more detail, let

LT :=
√

VT/σT (12.7)

denote the liquidity ratio, which measures the capacity of the market to absorb
incoming order flow. If prices are exactly diffusive, one has σT =

√
Tσ1, and if

traded volume grows linearly with time, i.e. VT = TV1 (where “1” denotes, say,
one trading day), then one finds

LT =

√
TV1√
Tσ1

=

√
V1

σ1
.

Therefore, LT is independent of T . If we rewrite Equation (12.6) to include LT ,
we arrive at (for δ = 0.5)

Ipeak(Q,T ) =
Y
LT

√
Q.

5 The idea that trading 1% of a stock’s total market capitalisation should move its price by about 1% was common
lore in the 1980s, when impact was deemed totally irrelevant for quantities representing a few basis points ofM.
Neglecting the potential impact of trades representing 100% of VT , but (at the time) about 0.25% of the market
capitalisation, is often cited as one of the reasons for the 1987 crash, when massive portfolio insurance trades
created havoc in financial markets (see, e.g., Treynor, J. L. (1988). Portfolio insurance and market volatility.
Financial Analysts Journal, 44(6), 71–73).
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Hence, the square-root impact can be written as:

Ipeak(Q,T ) � Yσ1

√
Q
V1
, (Q� VT ), (12.8)

which illustrates that the impact of a metaorder is only determined by Q, not the
time T that it took to be executed. A possible explanation, from an economic point
of view, is that the market price has to adapt to a change of global supply/demand
εQ, independently of how this volume is actually executed. We provide a more
detailed, Walrasian view of this non-trivial statement in Chapter 18.

12.3.3 Domain of Validity
As with all empirical laws, the square-root impact law only holds within a certain
domain of parameters. In this section, we discuss this domain and highlight some of
the limitations that one should expect on more general grounds.

First, as we noted in Section 12.3.2, the square-root law should only hold when
the execution horizon T is shorter than a certain memory time Tm, which is
related to the time after which the underlying latent liquidity of the market has
evolved significantly (see Chapter 18). The memory time Tm is difficult to estimate
empirically, but one may expect that it is of the order of days. Therefore, the impact
of a metaorder of size Q that is executed over a horizon of several weeks or months
should become approximately proportional to Q, if the permanent component of
impact is non-zero.

Second, the ratio Q/VT should be small, such that the metaorder constitutes only
a small fraction of the total volume VT and such that the impact is small compared
to the volatility. In the case where Q/VT is substantial, one enters a different regime,
because the metaorder causes a large perturbation to the ordinary course of the
market. In this large Q/VT regime, a metaorder with a sufficiently long execution
horizon T for the underlying latent liquidity to reveal itself is expected to have a
completely different impact than a metaorder that is executed extremely quickly, with
the risk of destabilising the market and possibly inducing a crash.

More formally, let τliq be the time needed for the LOB liquidity to refill, which is
typically on the scale of seconds to minutes. The two above-mentioned regimes are:

• Slow execution, such that τliq � T � Tm. For small Q/VT , this is the square-root
regime discussed in the last section. As Q/VT increases beyond (say) 10%, one
may actually expect that the square-root behaviour becomes even more concave,
because more and more sellers (respectively, buyers) eventually step in to buffer
the increase (respectively, decrease) in price (see Equation (18.10) for a concrete
example).6

• Fast execution, such that T � τliq. In this case, impact becomes a convex (rather
than concave) function of Q for large Q. This is clear in the limit T → 0, where the
metaorder simply consumes the liquidity immediately available in the LOB. Since
the mean volume profile in the LOB first increases then decreases with increasing
distance from the mid-price (see Section 4.7), the immediate impact of a volume

6 This seems consistent with empirical findings, see, e.g., Zarinelli et al. (2015). Beyond the square root: Evidence
for logarithmic dependence of market impact on size and participation rate. Market Microstructure and
Liquidity, 1(02), 1550004. One should however keep in mind the possible “Implementation Bias 1” discussed
in the next section.
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Q will first be a concave, and then a convex, function of Q.7 This is the reason
that some financial markets implement circuit breakers, which aim to slow down
trading and allow time for liquidity to replenish (see Section 22.2).

Finally, the regime where Q is smaller than the typical volume at best Vbest is
again expected to depart from a square-root behaviour and recover a linear shape.
This is suggested both by some empirical results8 and by the theoretical analysis of
Chapters 18 and 19.

In summary, the square-root impact law holds (approximately) in the regime of
intermediate execution horizons T and intermediate volume fractions Q/VT :

τliq� T � Tm;
Vbest

VT
� Q

VT
� 0.1,

which is the regime usually adopted by investors in normal trading conditions.
Different behaviours should be expected outside of these regimes, although data to
probe these regions is scarce, and the corresponding conclusions currently remain
unclear.

12.3.4 Possible Measurement Biases
The peak impact of a metaorder Ipeak(Q,T ) can be affected by several artefacts and
biases. To obtain reproducible and understandable results, one should thus stick
to a well-defined experimental protocol, and be aware of the following possible
difficulties:

(i) Prediction bias 1: The larger the volume Q of a metaorder, the more likely it
is to originate from a stronger prediction signal. Therefore, a larger part of its
impact may be due to short-term predictability, and not reveal any structural
regularity of the reaction part of impact.

(ii) Prediction bias 2: Traders with strong short-term price-prediction signals may
choose to execute their metaorders particularly quickly, to make the most of
their signal before it becomes stale or more widely-known. Therefore, the
strength of a prediction signal may itself influence the subsequent impact path
(this is the prediction impact), in particular when the prediction horizon is
comparable to the execution horizon. This bias is also likely to affect the
long-term, permanent component I∞(Q) of the impact (see Section 12.2).

(iii) Synchronisation bias: The impact of a metaorder can change according to
whether or not other traders are seeking to execute similar metaorders at the
same time. This can occur if different traders’ prediction signals are correlated,
or if they trade based on the same piece of news. (Note that this bias overlaps
with the prediction biases discussed in (i) and (ii)).

(iv) Implementation bias 1: Throughout this chapter, we have assumed that both
the volume Q and execution horizon T are fixed before a metaorder’s execution
begins. In reality, however, some traders may adjust these values during
execution, by conditioning on the price path. In these cases, understanding
metaorder impact is much more difficult. For example, when examining a
buy metaorder that is only executed if the price goes down, and abandoned
if the price goes up, impact will be negative. This implementation bias is
expected to be stronger for large volumes, since the price is more likely to have

7 Indeed, the immediate impact I is set by the condition:∫ m1+I

m1

dp′V+(p′) = Q,

where V+(p) is the density of available orders at price p (see Section 3.1.7). Solving for I as a function of Q
leads to a convex shape at large Q when V+(p) is a decreasing function of p.

8 Zarinelli et al. (2015).
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moved adversely in these cases. This conditioning may result in a systematic
underestimation of Ipeak(Q,T ) at large Q’s.

(v) Implementation bias 2: The impact path can become distorted for metaorders
that are not executed at an approximately constant rate. For example, if
execution is front-loaded, in the sense that most of the quantity Q is executed
close to the start time t1, the impact at time tN will have had more time to decay,
and may therefore be lower than for a metaorder executed at constant rate.

(vi) Issuer bias: Another bias may occur if a trader submits several dependent
metaorders successively. If such metaorders are positively correlated and occur
close in time to one another, the impact of the first metaorder will be different
to the impact of the subsequent metaorders. Empirically, the impact of the first
metaorder is somewhat greater than that of the second, and so on (much as for
single market orders; see Section 11.3.4). Reasons for this will become clear in
Chapter 19.

All these biases are pervasive. Fortunately, most of them can be avoided when
one has access to proprietary trading data that contains full information about
each child order, as described in Section 12.2.1. However, even less-ideal data sets
still lead to similar conclusions on the dependence of the peak impact Ipeak(Q,T )
on Q. Remarkably, many different studies (based on different assets, epochs,
trading strategies and microstructure) all converge to a universal, square-root-like
dependence of Ipeak(Q,T ) on Q, and a weakly decreasing dependence on T .

12.3.5 Common Misconceptions
We now discuss some misconceptions and confusions about the impact of metaorders
that exist in the literature.

• The impact of a metaorder of volume Q is not equal to the aggregate impact of
order imbalance ΔV , which is linear, and not square-root-like, for small Q (see
Section 11.4).9 Therefore, one cannot measure the impact of a metaorder without
being able to ascribe its constituent trades to a given investor.

• The square-root impact law applies to slow metaorders composed of several
individual trades, but not to the individual trades themselves. Universality, if it
holds, can only result from some mesoscopic properties of supply and demand
that are insensitive to the way markets are organised at the micro-scale. This would
explain why the square-root law holds equally well in the pre-HFT era (say, before
2005) as today, why it is insensitive to the tick size, etc.

• Conversely, at the single-trade level, microstructure effects (such as tick size and
market organisation) play a strong role. In particular, the impact of a single market
order, R(υ,1), does not behave like a square-root, although it behaves as a concave
function of υ. This concavity has no immediate relation with the concavity of the
square-root impact for metaorders.

• A square-root law for the mean impact of a metaorder is not related to the fact that
the average squared price difference on some time interval grows linearly with the
total exchanged volume:

E

⎡⎢⎢⎢⎢⎢⎢⎣(mt+T −mt)
2

∣∣∣∣∣∣ ∑
n∈[t,t+T )

υn = V

⎤⎥⎥⎥⎥⎥⎥⎦ ∝ V. (12.9)

9 In particular, the assumption that the aggregate order-flow imbalance ΔV in a given time window is mostly due
to the presence of a single trader executing a metaorder of size Q, such that ΔV =Q+ noise, is not warranted. For
example, ΔV likely results from the superposition of several (parts of) overlapping metaorders with different
sizes, signs and start times.
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Equation (12.9) is a trivial consequence of the diffusive nature of prices when
the total traded volume V scales like T . Cursorily, this relationship reads as
“price differences grow as the square-root of exchanged volumes”, but it tells us
nothing about the average directional price change in the presence of a directional
metaorder.

The square-root law is a genuinely challenging empirical fact. Most models in the
literature (such as the famous Kyle model; see Chapter 15) predict linear impact. We
review some possible scenarios that could explain the concavity of metaorder impact
in Section 12.6.

12.4 Impact Decay

At time tN , the pressure exerted by the metaorder stops and the price reverts back
(on average) towards its initial value. Empirical data again suggests a universal
behaviour, at least shortly after tN , when impact relaxes quite abruptly. The decay
then slows down considerably, and impact appears to reach a plateau.

For times beyond tN , empirical data becomes increasingly noisy, because the
variance of price changes itself increases linearly with t. The issue of long-term
impact is thus extremely difficult to settle, in particular because one expects
impact to decay as a slow power-law of time to compensate the long memory of
order signs (see Section 13.2 and Chapter 19). Therefore, although the transient,
square-root impact Itrans.(Q, t) is most likely universal, the permanent impact
component I∞(Q) is a combination of a reaction component (as would happen in
the Santa Fe model) and a genuine prediction component (resulting from the fact
that some agents do successfully predict the future price).10 Perhaps tautologically,
one expects I∞(Q) to be higher for agents with a high predictive power than for
noise trades (who trade without information, e.g. for risk or cash-flow purposes).

Since metaorders themselves tend to be autocorrelated in time (the same
decision to buy or sell might still be valid on the next day, week or month),
it is difficult to separate the mechanical contribution from the informational
contribution, especially in view of the slow decay of impact. An apparent
permanent impact could well be due to the continuing pressure of correlated
metaorders. Again, measuring the amount of true information revealed by trades
is very difficult (see Chapter 20).

12.5 Impact Path and Slippage Costs

How can we be sure that the square-root law is really universal, and is not a
consequence of measurement biases (such as those listed in Section 12.3.4) or
conditioning by traders, perhaps by some sophisticated optimisation program (see

10 See references in Section 12.7.
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Section 21.2.3)? Thankfully, high-quality proprietary data allows us to dismiss
most of these concerns and to check that the square-root law is actually extremely
robust. Indeed, one finds that the impact of the initial φ% of a metaorder of total
size Q also obeys the square-root law:11

Ipath(φQ,φT |Q,T ) � Ipeak(φQ) =
√
φIpeak(Q). (12.10)

Hence, a partial metaorder consisting of the first φ% of a metaorder of size Q
behaves as a bona fide metaorder of size φQ, and also obeys the square-root
impact law. This implies that the square-root impact is not a mere consequence
of how traders choose the size and/or the execution horizon of their metaorders as
a function of their prediction signal (see Section 21.2.3 for a detailed discussion of
this point).

Interestingly, Equation (12.10) allows one to relate the execution shortfall C (or
impact-induced slippage) to the peak impact

C (Q) =

〈∑
i

ευi · (mi −m1)
∣∣∣∣Q〉
=

∑
i

υiI
path

⎛⎜⎜⎜⎜⎜⎜⎝∑
j<i

υ j

⎞⎟⎟⎟⎟⎟⎟⎠ . (12.11)

Using Equation (12.10) and taking the continuous limit υi→ Qdφ,

C (Q) ≈ Q
∫ 1

0
dφIpath(φQ,φT |Q,T ) ≈ QIpeak(Q)

∫ 1

0
dφ

√
φ =

2
3

QIpeak(Q).

A square-root impact therefore leads to a square-root execution shortfall.
Importantly, the execution shortfall per unit volume corresponds to 2

3 of the peak
impact. If impact was linear, the execution shortfall per unit volume would only be
1
2 of the peak impact.

12.6 Conclusion

The most important conclusion of this chapter is that, contrarily to intuition, the
average impact of a metaorder does not scale linearly with its volume Q. Instead,
impact obeys the square-root law from Equation (12.6). This behaviour is contrary
to what is predicted by many models, such as the Kyle model (see Chapter 15),
which predict linear behaviour. This is an interesting case where empirical
data compelled the finance community to accept that reality was fundamentally
different from mainstream theory.

Since the mid-nineties, several stories have been proposed to account for the
square-root impact law. The first attempt, due to the Barra Group and Grinold

11 See, e.g., Moro, E., Vicente, J., Moyano, L. G., Gerig, A., Farmer, J. D., Vaglica, G., & Mantegna, R. N. (2009).
Market impact and trading profile of hidden orders in stock markets. Physical Review E, 80(6), 066102; Donier,
J., & Bonart, J. (2015). A million metaorder analysis of market impact on the Bitcoin. Market Microstructure
and Liquidity, 1(02), 1550008.
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and Kahn (1999),12 argues that the square-root behaviour is a consequence of
market-markers being compensated for their inventory risk. The reasoning is as
follows. Assume that a metaorder of volume Q is absorbed by market-makers who
will need to slowly offload their position later on. The amplitude of a potentially
adverse move of the price during this unwinding phase is of the order of σ1

√
Toff,

where Toff is the time needed to offload an inventory of size Q. It is reasonable to
assume that Toff is proportional to Q and inversely proportional to the trading rate
of the market V1 (see Section 12.3.2). If market-makers respond to the metaorder
by moving the price in such a way that their profit is of the same order as the risk
they take, then it would follow that I∝σ1

√
Q/V1, as found empirically. However,

this story assumes no competition between market-makers. Indeed, inventory risk
is diversifiable over time, and in the long run averages to zero. Charging an
impact cost compensating for the inventory risk of each metaorder would lead
to formidable profits and would necessarily attract competing liquidity providers,
eventually leading to a Y-ratio much smaller than 1.

Another theory, proposed by Gabaix et al. (2003), ascribes the square-root
impact law to the fact that the optimal execution horizon T ∗ for informed
metaorders of size Q grows like T ∗ ∼ √Q (see Section 21.2.3 for a detailed
derivation). This theory argues that since the price is expected to move linearly
in the direction of the trade during T ∗ (as information is revealed), the peak impact
itself behaves as

√
Q. However, this scenario would imply that the impact path

is linear in the executed quantity q, which is at odds with empirical data. As we
noted in Section 12.5, the full impact path also behaves as a square-root of q (at
least when the execution schedule is flat).

Recently, Farmer et al. (2013) proposed yet another theory that is very
reminiscent of the Glosten–Milgrom model, which argues that the size of the
bid–ask spread is actually set competitively (see Section 16.1). The theory assumes
that metaorders arrive sequentially, with a volume Q distributed according to a
power-law. Market-makers attempt to guess whether the metaorder will continue
or stop at the next time step, and set the price such that it is a martingale and such
that the average execution price compensates for the information contained in the
metaorder (this condition is sometimes called “fair-pricing”). If the distribution
of metaorder sizes behaves as Q−5/2, these two conditions lead to a square-root
impact law (see Sections 13.4.5 and 16.1.6 for more details). Although enticing,
this theory has difficulty explaining why the square-root impact law appears to
be much more universal than the distribution of the size of metaorders or of
the autocorrelation of trade signs.13 For example, the square-root law holds very
precisely in Bitcoin markets, where the distribution of metaorder sizes behaves

12 See also Section 12.7, in particular Zhang, Y.-C. (1999).
13 On this last point, see Mastromatteo, I., Tóth, B., & Bouchaud, J. P. (2014). Agent-based models for latent

liquidity and concave price impact. Physical Review E, 89(4), 042805.
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as Q−2, rather than Q−5/2, and at a time where market-making was much less
competitive.

Closer to the spirit of the present book, Tóth et al. (2011) proposed an alternative
theory based on a dynamical description of supply and demand. This approach
provides a natural statistical interpretation for the square-root law and its apparent
universality. We provide a detailed overview of this idea in Chapters 18 and 19.

Take-Home Messages

(i) By studying the impact of metaorders, it is possible to quantify how
market participants’ actions impact prices at a mesoscopic scale.

(ii) According to the square-root law, the immediate price impact of a
metaorder behaves as a square root of the order’s volume.

(iii) The square-root law holds in a wide range of market scenarios,
and can be observed empirically for both informed and uninformed
metaorders.

(iv) When studying metaorder impact, it is important to avoid the many
biases that could influence measurements.

(v) After a metaorder stops, the price reverts (on average) towards its
pre-trade value. How much of the impact remains long after the
execution (i.e. the permanent impact) depends on the predictive power
or informational content of the metaorder.
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Introduction

In the previous parts of this book, we have addressed the empirical and conceptual
aspects of the relationship between order flow and price formation. Let us recap
what we have so far: a highly predictable order flow, which is a consequence of
traders splitting their metaorders into small chunks due to liquidity shortage, and
some observations of how trades impact prices. In this part, we will begin our
modelling efforts of market dynamics at the micro-scale by introducing a class of
simple models of price formation, often dubbed propagator models. When fitted
on data, these models provide a route to computing many different quantities of
interest, including the aggregate impact of individual orders and the impact of
metaorders.

We will use propagator models to explore two interesting topics. The first topic
is how to infer the reaction impact from the observed impact of real trades. By
making explicit the relationship between these two types of impact, propagator
models make it possible to estimate the reaction impact from the empirical
response function, which we have already encountered in Chapter 11. In this view,
the prediction component of impact is simply the reaction component of other
(past and future) trades. Correlations in the order flow therefore play a central role.
As we will discuss in this part, the outcome of such empirical calculations is quite
intriguing: the reaction impact of orders is neither permanent (as it decays to zero
in the long run) nor transient (as this decay is so slow that it takes an extremely
long time to vanish).

The second topic is understanding how prices can remain unpredictable when
order flows exhibit strong, long-range autocorrelations. As we discussed in the
first part of this book, the signature plot of market prices is nearly flat on
all scales, which indicates that price returns are linearly unpredictable. How
is this possible when the order flow itself is so predictable? As we will see,
the answer stems from the dynamic nature of price impact. By performing
detailed calculations, we will show that the slowly decaying reaction impact
exactly compensates for the autocorrelation in order flow, so as to produce
diffusive prices. We will also present another angle for understanding this fine
balance: if the impact of an order is proportional to its surprise, and not just its
direction, then by definition prices must be unpredictable. As we will show, such
history-dependent impact models are equivalent to propagator models in some par-
ticular cases.

Thanks to their simplicity, propagator models are powerful and versatile tools
for modelling markets. In addition to the basic modelling framework, we will
consider a selection of variants and extensions, including considering several
types of orders with different reaction impacts. We will also discuss how one can
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compare the impact between different investors and analyse the cross-asset impact
of trades. As we will discuss in the last part of this book, propagator models
can also form the basis of simple trading-optimisation schemes. Therefore, in
addition to their usefulness as theoretical tools for understanding complex market
behaviour, propagator models are also helpful for market practitioners who seek to
optimise the execution of their trades.
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The Propagator Model

It is better to be roughly right than precisely wrong.
(John Maynard Keynes)

In the previous two chapters, we have considered how individual market
orders and whole metaorders impact the mid-price. In both cases, our study of
impact has primarily revolved around measuring the change in price that occurs
contemporaneously with the specified market order or metaorder. However, as we
briefly discussed in Sections 11.3.1 and 12.4, impact is not only felt immediately,
but rather evolves dynamically. In fact, the “reactional” component of impact is
expected to be mostly transient. In this chapter, we introduce a model that seeks
to describe how impact evolves over time, in such a way to avoid the efficiency
paradox created by the long memory of order signs.

Similarly to the previous chapters, we restrict our attention to market order time,
in which we advance the clock by a single unit for each market order arrival. In this
framework, we introduce and study a simple, linear model called the propagator
model, which expresses price moves in terms of the influence of past trades. We
demonstrate that to avoid creating statistical arbitrage opportunities and ensure
market efficiency, the propagator model must possess certain properties, which
we subsequently use to refine the model towards a more specific form. Despite
its simplicity, the propagator model provides deep insight into the nature of price
impact in financial markets. To conclude the chapter, we frame the propagator
model in a wider context and discuss various conceptual points and extensions.

13.1 A Simple Propagator Model

In Chapter 11, we discussed how strongly, on average, the arrival of a market
order of a given volume υ impacts the mid-price. After the arrival occurs, there is
no reason why the impact of a market order should remain visible indefinitely,

249
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because that would mean that the order’s arrival shifted the entire supply and
demand curves forever. As we will show in this section, if that was the case,
then the long-range autocorrelations of market order signs would create strong
autocorrelations in returns. This is at odds with widespread empirical observations
of signature plots (see the discussion in Section 10.3), which are nearly flat.
Therefore, market efficiency imposes that a large fraction of a market order’s
impact must relax over time.

To illustrate why this is the case, we first consider a naive model of impact, in
which every trade causes a fixed, constant lag-1 impact that persists permanently.
To consider this in detail, let us consider the mathematical properties of the return
series that such a process would generate. Let

rt :=mt+1 −mt (13.1)

denote the change in mid-price from immediately before the tth event until
immediately before the (t + 1)th event. We assume that each trade has a mean
permanent impact equal to G1.1 Using this notation, our simple model translates
into

rt =G1εt + ξt, (13.2)

where ξt is a random noise term that models fluctuations around the average impact
contribution and that also captures price changes not directly attributed to trading
(e.g. quote changes that occur due to the release of public news, even without any
trades occurring). We will assume here that ξt is independent of the order flow εt,
with E[ξ] = 0 and E[ξ2] = Σ2.

Given the mid-price mt0 at some previous time t0 ≤ t, the mid-price mt is given by

mt =mt0 +G1

∑
t0≤n<t

εn +
∑

t0≤n<t

ξn. (13.3)

Equation (13.3) highlights the non-decaying nature of impact in this model:
whatever happened at all previous times is permanently imprinted on the price
at time t.

When the signs of the trades are independent random variables with zero mean,
this simple model predicts that the response function (see Equation (11.6)) is
simply constant:

R(�) = E[εt · (mt+� −mt)],

= E [εt · [(mt+� −mt+1)+ (mt+1 −mt)]] ,

=G1. (13.4)

1 In the present context, G1 coincides with the quantity R(1) considered in the previous chapters, but this
correspondence no longer holds in the presence of sign autocorrelations, which we will address in the
subsequent sections.
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The model also makes the following prediction for the mid-price variogram (see
Equation (2.1)):

V(�) :=V[mt+� −mt],

=
(
G2

1 +Σ
2
)
�. (13.5)

Therefore, the model predicts that the mid-price obeys a pure diffusion with
lag-independent diffusion coefficient (or squared volatility)

D(�) =
V(�)
�
=G2

1 +Σ
2, (13.6)

as is observed empirically in liquid markets (except perhaps at small �).
Despite the appealing simplicity of these results, this naive model ignores an

important ingredient of real markets: the autocorrelation of the order-sign series
εt. As we discussed in Chapter 10, real market order sign series have strong
long memory, with an autocorrelation function C(�) that decays approximately
according to a power law. Incorporating this autocorrelation structure into the
model, we arrive at the following expression for the autocovariance of price returns
for � > 0:

E[rtrt+�] =G2
1E[εtεt+�],

=G2
1C(�).

Therefore, if we incorporate the autocorrelation structure of market order signs,
then our simple model predicts that price returns become strongly autocorrelated.
This would violate market efficiency, because price returns would be strongly
predictable. If prices are to be efficient, then we must conclude that the empirically
observed long memory of order flow rules out the above assumption of impact
being a simple constant (and thus permanent).

How might we resolve this conundrum? In the next section, we will consider two
possibilities: relaxing the assumption that price impact is permanent, or relaxing
the assumption that lag-1 impact is independent of the past order flow. As we
will see from our analysis, these two seemingly different approaches are actually
closely related.

13.2 A Model of Transient Impact and Long-Range Resilience

As we have noted several times, the long-range autocorrelation of market order
signs is an interesting and puzzling property of financial markets. The fact that
returns remain uncorrelated despite this long-range autocorrelation in market order
signs suggests that markets are somehow resilient to these clusters of highly



252 The Propagator Model

predictable market orders in the same direction. To understand this interesting
property more clearly, let’s consider a more general version of Equation (13.3),
in which we regard the impact not as a constant G1, but instead as a function G(�)
that describes how the impact of the trade propagates through time. We call the
function G(·) the propagator.

Using this notation, we can generalise Equation (13.3) as:

mt =mt0 +
∑

t0≤n<t

G(t− n)εn +
∑

t0≤n<t

ξn, (13.7)

where ξn again captures all price moves not directly induced by trades (e.g. due to
quote revisions during news announcements).

Clearly, the functional form of the propagator G(·) influences the values of mt

in the model. For G(�) to capture the transient component of impact, it seems
reasonable that G(�) should decrease with increasing �. The long-time limit

G∞ := lim
�→∞

G(�)

captures the permanent reaction impact of a market order. The simple, constant
propagator that we considered in Equation (13.3) corresponds to the function
G(�) =G1 for all lags.

For the sake of simplicity, we will assume that impact is independent of trade
volume, time and market conditions. All three of these assumptions are gross
oversimplifications that do not accurately reflect the behaviour observed in real
markets (see, e.g., Sections 11.3.1 and 11.3.2), but by adopting them we greatly
simplify the mathematics associated with formulating a first model. We will revisit
and relax these assumptions within a more general model in Chapter 14.

Equation (13.7) defines a family of linear, transient impact models (TIM).
Within this family of models, reaction impact is parameterised by the propagator
G(�), which encodes how a market order executed at time t impacts the price at a
later time t+ �.

We can use the model in Equation (13.7) to write an expression for the return
series:

rt = G1 εt︸︷︷︸
immediate impact

+
∑
n<t

K(t− n)εn︸�����������︷︷�����������︸
impact decay

+ ξt︸︷︷︸
noise

, (13.8)

where G1 :=G(1), and for � ≥ 1,

K(�) :=G(�+ 1)−G(�),

which is the discrete derivative of G(�). Therefore, the model predicts the return
at time t is due not only to the most recent trade (whose contribution is G1εt), but
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also to all previous trades. Introducing the convention G(0) = 0, Equation (13.8)
can be written in a more compact form:

rt =
∑
n≤t

K(t− n)εn + ξt. (13.9)

As we will now demonstrate, the model allows us to compute the response function
R(�) (or observed impact) and the price variogram V(�) for an arbitrary function
G(�) and an arbitrary correlation between trades C(�).

13.2.1 The Response Function

By plugging Equation (13.7) into Equation (13.4), one readily obtains the
following expression for the response function:

R(�) =G(�)+
∑

0<n<�

G(�− n)C(n)+
∑
n>0

[G(�+ n)−G(n)]C(n). (13.10)

If the terms in the market order sign series were uncorrelated, it would follow that
C(n) = 0 for all n > 0, so only the first term of the expression would be non-zero,
leading to R(�)=G(�). In this case, the observed impact R(�) and the bare reaction
impact G(�) would be one and the same thing. In reality, however, market order
signs are strongly autocorrelated, so we need to consider the full expression.

In this model, the lag-1 impact R(1) (which we measured in Chapter 11)
includes the decay of the impact of all previous correlated trades, and is given by

R(1) =
∑
n≥0

K(n)C(n) =G1 +
∑
n>0

K(n)C(n). (13.11)

Because the impact of an individual trade should decay with time, one expects
K(n> 0)≤ 0. If trade signs are positively autocorrelated, one concludes that R(1)≤
G1.

The asymptotic response function is given by

R∞ =G∞ + lim
�→∞

⎧⎪⎪⎨⎪⎪⎩ ∑
0<n<�

G(�− n)C(n)+
∑
n>0

[G(�+ n)−G(n)]C(n)

⎫⎪⎪⎬⎪⎪⎭ , (13.12)

which in fact requires some special conditions for the result to be finite (i.e.
non-divergent). We return to this discussion in Section 13.2.3.

For any � ≥ 0, Equation (13.10) relates the bare reaction impact G(�), which is
not directly observable, to two quantities that are: the observed impact R(�) and
the autocorrelation of trade signs C(�). One could therefore use this equation to
estimate G(�) from empirical data. However, this direct method is very sensitive
to finite-size effects, and therefore provides poor estimates of G(�): in practice, �
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must be smaller than the maximum lag L that allows a reasonable estimation of R
and C, beyond which it becomes difficult to separate the signal from noise.

An alternative approach to this problem is to use the lagged sign-return
correlation, which is defined as

S (�) := E[rt+� · εt] = R(�+ 1)−R(�). (13.13)

The function S (·) can be regarded as the discrete derivative of R(·). It is
straightforward to find the analogue of Equation (13.10) for S (·):

S (�) =
∑
n≥0

C(|n− �|)K(n), (13.14)

where we have again used the convention G(0) = 0. This equation can also be
written in matrix form, as

�S =C�K, (13.15)

where the matrix M is given by

Cn,m =C(|n−m|); 0 ≤ n,m ≤ L.

By inverting the matrix C, Equation (13.15) can be rewritten as

K(�) =
L∑

n=0

(C−1)�,nS (n).

Observe that calculating K(�) only requires knowledge of the values of S for
positive lags.

In Figure 13.1, we plot R(�) and G(�) for one large-tick stock and one small-tick
stock. As expected, G(�) decays with increasing �. Upon closer scrutiny, one
finds that the long-time behaviour of G(�) decays approximately according to a
power-law,

G(�) ≈�	1
Γ∞
�β
, β < 1,

(see the inset of Figure 13.1). This is the precise definition of the “resilience”
property that we discussed at the beginning of Section 13.2: the propagator G(�)
decays all the way to zero, but so slowly that its sum over all � is divergent. We
call this property long-range resilience, because it parallels the definition of long
memory (see Section 10.1) when the decay exponent γ of C(�) is less than 1.

In summary, the impact of a trade dissipates over time, but does so very slowly.
As we will now show by considering the price variogram V(�), this slow decay
turns out to play a crucial role in ensuring that the mid-price remains diffusive in
the face of the long-range autocorrelations of market order signs.
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Figure 13.1. The empirical response function R(�) and the propagator G(�),
calculated from the empirical R(�) and C(�), for (top left) INTC, (top right)
CSCO, (bottom left) TSLA and (bottom right) PCLN. Inset: The same plots
in doubly logarithmic axes. The dashed black lines depict a power-law with
exponent −0.25.

13.2.2 The Variogram
Once G(�) is determined, the propagator model provides a definite prediction for the
variogram, shown in Figure 13.2. In full generality, the equation relating V(�) to
G(�) and C(�) reads

V(�) =
∑

0≤n<�

G2(�− n)+
∑
n>0

[G(�+ n)−G(n)]2 + 2Ψ(�)+Σ2�, (13.16)
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where Ψ(�) is the correlation-induced contribution toV:

Ψ(�) =
∑

0≤ j<k<�

G(�− j)G(�− k)C(k− j)

+
∑

0< j<k

[
G(�+ j)−G( j)

]
[G(�+ k)−G(k)]C(k− j)

+
∑

0≤ j<�

∑
k>0

G(�− j) [G(�+ k)−G(k)]C(k+ j).

Let us analyse the large-� behaviour of V(�), in the case where C(�) decays as
c∞�−γ with γ < 1 (which, as we saw in Chapter 10, is a good approximation of the
large-� behaviour of C(�) for real markets). Motivated by the numerical result that we
obtained for G(�), we assume that for large �, the propagator G(�) decays as a power
law Γ∞�−β. When 0 < β < 1/2 and 0 < γ < 1, asymptotic analysis (with �	 1) of the
first two terms of Equation (13.16) reveals that they both grow sub-linearly with �:

∑
0≤n<�

G2(�− n) ≈
∑

0<n≤�

Γ2
∞
�2β
≈ Γ2

∞
1− 2β

�1−2β� Σ2�,

and

∑
n>0

[G(�+ n)−G(n)]2 ≈ Γ2
∞�

1−2β

∫ ∞

0
du

(
1

(1+ u)β
− 1

uβ

)2

= A(β)Γ2
∞�

1−2β� Σ2�,

where A is a finite number,

A =
1

1− 2β

(
2Γ[2β]Γ[1− β]

Γ[β]
− 1

)
; 0 < β <

1
2
.

Therefore, only the contribution Ψ(�) in Equation (13.16) may compete with
the long-term diffusion behaviour of the price induced by the public news term
ξt. Asymptotic analysis of Ψ(�) yields the following contribution to the diffusion
coefficient:

DΨ(�) :=
Ψ(�)
�
≈ Γ2

∞c∞I(γ,β) �1−2β−γ,

where I(γ,β) > 0 is a (complicated but finite) numerical integral.
We first examine what would happen if the propagator G(�) did not decay at all

(β = 0). This case corresponds to the assumption that impact is permanent. In this
case, in the presence of long memory of the order flow 0 < γ < 1, one finds that
DΨ(�) ∝ �1−γ, which grows with increasing �. This corresponds to a super-diffusive
price – or, in financial language, the presence of persistent trends in the price series.
This is the efficiency paradox created by the long-range correlation of market order
signs.

As the propagator decays more quickly (i.e. as β increases), super-diffusion is less
pronounced (i.e. DΨ(�) grows more slowly), until

β = βc := (1− γ)/2, (13.17)

for which DΨ(�) is a constant, independent of �. Adding the variance of the “news”
contribution Σ2, the long-term volatility reads

D∞ = Γ2
∞c∞I(γ,βc)+Σ

2.
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Figure 13.2. (Markers and solid curves) The empirical values of the functionD(�)
and (dashed curve) its approximation with the 1-event (market order) propagator
model, Equation (13.16), with Σ2 = 0. The left panel shows the results for INTC,
which is a large-tick stock, and the right panel shows the results for TSLA,
which is a small-tick stock. Remarkably, the trade-only contribution accounts for
0.65−0.8 of the long-term squared volatility. However, the model completely fails
to capture the short-term structure of D(�), which suggests that one should also
take into account some time-dependence of G(�) (which might depend on event
type and past history; see Chapter 14).

When β > βc, DΨ(�) decreases with �, as do the contributions of the first two terms
of Equation (13.16).2 The lag-dependent volatility D(�) is in this case enhanced at
short lags by the transient impact contribution, resulting in sub-diffusive prices at
short lags.

Based on the calculations we have performed throughout this section, we can
now reach an important conclusion: provided that the impact of single trades
is transient (i.e. β > 0) and with a decay that precisely offsets the long-range
autocorrelations in market order signs (i.e. β= βc := (1−γ)/2), then the long-range
autocorrelation of market order signs is compatible with a random-walk behaviour
of the mid-price, and thus with statistical efficiency.

13.2.3 A Fine Balance

When the “fine balance” condition β = βc holds, we are in a rather odd situation
where impact is not permanent (since in the long-time limit �→∞, the propagator
G(�) is zero) but is not really transient either, because the decay is extremely slow.
The convolution of this semi-permanent impact balances exactly the slow decay
of trade correlations to produce a finite contribution to the long-term volatility.

2 Since γ < 1, it follows that 2− 2β− γ > 1− 2β, and therefore at large � the term DΨ(�) always dominates the
first two contributions of Equation (13.16) toD(�).
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Figure 13.3. Calculation of R(�) for a synthetic propagator G(�) ∼ �−β and a
synthetic correlation function C(�) ∼ �−1/2, with β ∈ {0.2,0.25,0.35}. Observe that
after an initial rapid increase, R is approximately flat for the parameter choice
β = βc = 0.25.

In fact, plugging a power law for G(�) into Equation (13.10) leads to a response
function R(�) that for large � behaves as

R(�) ≈�	1 Γ∞c∞
Γ[1−γ]

Γ[β]Γ[2− β−γ]

[
π

sinπβ
− π

sinπ(1− β−γ)

]
�1−β−γ (13.18)

provided β + γ < 1. We display the explicit numerical prefactor to highlight that
when �→∞, the value of R(�) diverges to +∞ whenever β < βc, and diverges to
−∞ whenever β > βc. If β = βc, then

π

sinπβc
=

π

sinπ(1− βc −γ)
,

so the leading term in R(�) vanishes. In this case, one must also estimate the
sub-leading term, which saturates to a finite valueR(∞). Hence, for β= βc, the total
asymptotic response to a trade (including all future correlated trades) is non-zero,
even though the impact of each individual trade G(�) decays to zero!

Figure 13.3 summarises this rather peculiar situation. Interestingly, we see that
financial markets operate in a fragile regime where liquidity providers and liquidity
takers offset each other, such that most of the predictable patterns that would other-
wise be created by their predictable actions are removed from the price trajectory.
Only an unpredictable contribution remains, even at the highest frequencies. We
will return to the question of how this occurs in Chapter 14, where we will attempt
to model the impact of all LOB events, not only that of market orders.
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13.3 History-Dependent Impact Models

An alternative way to ensure the statistical efficiency of prices is to assume that
the price impact of each order is permanent but history-dependent. Indeed, one
way to rephrase the fact that price returns are difficult to predict is that most of
the available information at time t is already included in the price, such that price
moves only occur if something truly unexpected happens. In other words, since
the signs of future trades are predictable, only the surprise component of the next
sign should have an impact on the price. Why should this be the case? One possible
explanation is that high-frequency participants act in such a way as to remove any
predictability – e.g. by providing liquidity on the side where the next trade is most
likely to happen (see Section 11.3.4).

13.3.1 The Impact of Surprises

We extend the expression in Equation (13.2) to formulate a version of the
propagator model in which returns are unpredictable, but still linear in εt. There
are two main ingredients to this approach. The first is to replace the (highly
predictable) order-sign term εt term with the corresponding sign surprise

(
εt − ε̂t

)
,

where ε̂t is the conditional expectation of εt:

ε̂t := Et−1[εt].

In this way, we replace the εt term, whose behaviour depends only on the market
order arrival at time t, with a term that also reflects the previous market order
arrivals. The second ingredient to replace the constant term G1 in Equation (13.2)
with a term that may depend on t (to reflect, for example, the spread dynamics).
Together, these ingredients lead to the following history-dependent impact
model (HDIM):

rt =G1,t × (
εt − ε̂t

)
+ ξt. (13.19)

Since neither the sign surprise
(
εt − ε̂t

)
nor ξt can be predicted, it follows that for

any immediate impact G1,t,

Et−1[rt] =G1,tEt−1
[
εt −Et1 [εt]

]
+Et−1[ξt] = 0.

Therefore, prices in the model are a martingale, even when the sign of the next
trade is highly predictable. This is a plausible first approximation to how prices
behave in real markets, although one observes that real prices deviate from the
martingale property at very high frequencies (see Figure 13.2 and Section 16.3).

Now, either the sign of the tth transaction matches the sign of ε̂t, or it does not.
Let E+t [rt] denote the expected ex-post value of the return of the tth transaction,
given that εt matches that of ε̂t, and let E−t [rt] denote the expected ex-post value
of the return of the tth transaction, given that εt does not match that of ε̂t. By
definition, the most likely outcome is that εt does match the sign of its predictor
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ε̂t, which happens with a probability given by (1 + |̂εt|)/2 (see Equation (13.21),
below).

The absence-of-predictability criterion Et−1[rt] = 0 can be rewritten as:

1+ |̂εt|
2
E+t [rt]+

1− |̂εt|
2
E−t [rt] = 0⇒

∣∣∣∣∣∣E+t [rt]
E−t [rt]

∣∣∣∣∣∣ = 1− |̂εt|
1+ |̂εt| ≤ 1.

Therefore, the most likely outcome has the smallest impact. This generalises the
result onR±(1) given in Section 11.3.4, which was based on a qualitative argument.
In the present picture, each trade has a permanent impact, but the impact depends
on the past order flow and on its predictability.

13.3.2 The DAR Model

We now assume that the time series of market order signs is well modelled by
a discrete auto-regressive process (see Section 10.4.2). In this framework, the
best predictor ε̂t = Et−1[εt] of the next trade sign, just before it happens, can be
written as

ε̂t =

p∑
k=1

K(k)εt−k. (13.20)

The backward-looking kernel K(k) can be inferred from the sign autocorrelation
function C(�) using the Yule–Walker equation (10.6). The probability that the next
sign is εt is then given by:

Pt−1(εt) =
1+ εtε̂t

2
. (13.21)

Because εt is a binary random variable, Equation (13.21) is equivalent to ε̂t =

Et−1[εt].
Inserting Equation (13.20) into Equation (13.19), we arrive at

rt =G1,tεt −G1,t

p∑
k=1

K(k)εt−k + ξt. (13.22)

In the case where G1,t does not depend on time, and can therefore be written as a
constant G1, we see (by comparing this expression with that in Equation (13.8))
that this framework is equivalent to the linear propagator model, with

K(�) :=G(�+ 1)−G(�) ≡ −G1K(�); (� ≤ p); K(� > p) = 0. (13.23)

Therefore, a slowly decaying G(�) ∼ �−β can only be reproduced by a high-order
DAR(k) model for which K(�) itself decays as a power-law (in fact, precisely as
�−β−1). The case where

K(k) =

{
ρ, for k = 1,
0, for k > 1
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leads to an exponential decay of the sign correlation, C(�) = ρ�. This corresponds
exactly to the MRR model that we will discuss in Section 16.2.1.

Throughout this section, we have greatly simplified all calculations by neglect-
ing the influence of trade volume. We present an extended version of this model,
including trade volumes, in Appendix A.3. Interestingly, even in cases where
volumes fluctuate considerably, the final results and conclusions are qualitatively
the same as those that we have presented above.

13.4 More on the Propagator Model

We now provide some advanced remarks about the propagator model, concerning
in particular the impact of metaorders, the aggregate impact of volume imbalance,
and its close kinship with Hasbrouck’s VAR model.

13.4.1 Hasbrouck’s VAR Model
In the wider literature on market microstructure, the so-called vector autoregressive
model (VAR), as proposed by J. Hasbrouck in 1991, is a standard and widely used
tool for predicting the present price return rt and signed volume vt = εtυt from their
previous realisations. In this section, we illustrate how the propagator framework, as
encapsulated in Equation (13.8), can be regarded as a special case of Hasbrouck’s
VAR model.

The VAR model is the joint linear regression:

rt =G1vt +
∑
−∞<n<t

K(t− n)(t− n)vn +
∑
−∞<n<t

Hrr(t− n)rn + ξt,

vt =
∑
−∞<n<t

Hvv(t− n)vn +
∑
−∞<n<t

Hrv(t− n)rn + ξ
′
t .

(13.24)

The propagator model can be seen as a special case of Equation (13.24), where:

• In the propagator model, the signed volume vt in Equation (13.24) is replaced
by the sign εt. This is justified by the fact that trade volumes carry much less
information than a linear model would imply.

• In the propagator model, there is no direct impact of past returns on the present
return (i.e. Hrr = 0). This choice corresponds to a mechanistic interpretation of
trade impact, where one assumes that past price changes by themselves do not
influence present returns.

• In the propagator model, the dynamics of signed volumes (or signs) is summarised
by the autocorrelation function Cv(�) but is not described explicitly, although the
DAR model is one possible specification, with the Yule–Walker relation:

Cv(�) =
∞∑

k=1

Hvv(k)Cv(|�− k|).

• In the propagator model, there is no direct feedback of the price change on the
order flow (i.e. Hrv = 0). The order flow is therefore assumed to be “rigid”,
independent of the price trajectory. This is clearly an approximation, which is
partially addressed by the generalised propagator model (see Chapter 14).

In the VAR model, the information content IH of a trade is defined as the
long-term average price change, conditioned on a trade occurring at time t = 0:

IH = E[m∞ −m0 | v0 = v].

This is very close to the asymptotic response function R∞ in the propagator model,
with the only difference being that volume fluctuations are neglected in the latter.
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In other words, IH is given by the same expression as R∞ (see Equation (13.10)),
with C(�) replaced by Cv(�) and with a prefactor proportional to the volume v.
In Hasbrouck’s initial specification, the information content of a trade is therefore
proportional to its volume, whereas we know now that there is much less information
in volume than initially anticipated (see Section 11.3.2).

13.4.2 The Propagator Model as a Reduced Description of All
Order Flow

The propagator model that we have explored in this chapter considers price returns
only at the times of market order arrivals. In a real LOB, by contrast, several other
limit order arrivals and cancellations may occur between the arrivals of market
orders. In Chapter 14, we extend the propagator model to include these other events
explicitly. However, there are also good reasons for wishing to exclude these other
events from the model specification, such as not having access to them in market data
or simply wishing to keep the model formulation parsimonious. Therefore, we now
explore the extent to which the basic propagator model that we have introduced in
this chapter effectively includes the influence of these other LOB events.

Imagine that two types of events are important for price dynamics, but that we only
observe one of them. Observable events (e.g. market order arrivals) are characterised
by a random variable εt, which is simply the trade sign in the propagator model.
Unobservable events (e.g. limit order arrivals and cancellations) are characterised by
another random variable ξ̂t. If all events were observed, the full propagator model for
the mid-price, generalising Equation (13.7), would read

mt =mt0 +
∑

t0≤n<t

G(t− n)εn +
∑

t0≤n<t

H(t− n)̂ξn +
∑

t0≤n<t

ξt. (13.25)

Assume for simplicity that the εt and ξ̂t are correlated Gaussian random variables.
One can then always express the unobserved ξ̂ terms as a linear superposition of past
ε terms, plus noise. Inserting this decomposition into the equation above, one finds an
effective propagator model in terms of the ε only, plus an additional noise component
ξ′ coming from the unobserved events and from ξ:

mt =m−∞ +
∑
−∞<n<t

G(t− n)εn +
∑
−∞<n<t

H(t− n)
∑
−∞<m<n

Ξ(n−m)εm +
∑

0≤n<t

ξ′t , (13.26)

where Ξ is the linear filter for expressing the ξ̂s in terms of the past εs. This kernel
is the result of the classical Wiener filter, and can be expressed in terms of the
correlation function between the two sets of variables.3

Equation (13.26) can in fact be recast in the form of the single-event propagator
model, Equation (13.7), with an effective propagator G̃ that contains both the direct
effect modelled by G and the indirect influence of the unobserved events:

G̃(�) =G(�)+
�∑

n=1

H(�′)Ξ(�− �′).

From this equation, it is clear that a non-trivial temporal dependence of G̃ can arise,
even when the true propagators G and H are lag-independent. In other words, the
decay of a single market order’s impact should in fact be interpreted a consequence
of the interplay between market orders and limit orders. As a trivial example, suppose
both propagators are equal and constant in time, such that G(�) = H(�) =G0, but that
εn = −ξ̂n for all n. This means that both types of events impact the price, but that

3 See, e.g., Levinson, N. (1947). The Wiener RMS error criterion in filter design and prediction. Journal of
Mathematical Physics, 25, 261–278, and Appendix A.3 for an explicit example.
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they cancel each other out exactly. Then Ξ(�) = −δ�,0 leading to G̃(�) = 0 for all
�. Therefore, the effective impact of events of the first type is zero in the effective
model (and not G0). In reality, limit orders only partially “screen” the impact of
market orders, resulting in a non-trivial, time-decaying effective propagator.

13.4.3 Aggregate Impact
Within the propagator model, it is interesting to compute the aggregate impact of a
given order-flow imbalance in a time interval containing T trades (see Section 11.4).
For simplicity, we assume that the signed volume vn = εnυn of each transaction n is a
Gaussian variable with zero mean and unit variance, and long-range autocorrelations
given by C(�) ∼ �−γ. In this framework, we aim to compute the average value of
the mid-price change mt+T − mt, conditioned on a specified order-flow imbalance
ΔV =

∑T−1
j=0 v j. In the following, we choose for convenience the origin of time such

that t = 0.
Let us first compute the average value of vn when such a condition is imposed:

E[vn|ΔV] =
1
Z

∫ ∏
dv j vne

− 1
2

(∑
j,k v jC

−1
j,k vk

)
δ

⎛⎜⎜⎜⎜⎜⎜⎝T−1∑
j=0

v j −ΔV

⎞⎟⎟⎟⎟⎟⎟⎠ ,
where C j,k =C(| j− k|) is the correlation matrix, δ(·) is the Dirac delta function, and Z
is the same expression as in the numerator but without the vn term.

Using the standard representation of the δ function in terms of its Fourier
transform:

E[vn|ΔV] =
∂

∂wn
ln

(∫
dze−izΔV

∫ ∏
dvie

− 1
2
∑

i j viC
−1
i j v j+iz

∑T−1
j=0 v j+wnvn

)∣∣∣∣∣∣
wn=0

.

Performing the Gaussian integral, and keeping only terms that survive when wn→ 0:

E[vn|ΔV] =
∂

∂wn
ln

(∫
dze−izΔV e−

z2
2

∑T−1
j,k=0 C jk+izwn

∑T−1
j=0 Cn j

)∣∣∣∣∣∣
wn=0

.

Performing the Gaussian integration over z:

E[vn|ΔV] = − ∂

∂wn

(
ΔV −wn

∑T−1
j=0 Cn j

)2

2
∑T−1

j,k=0 C jk

∣∣∣∣∣∣∣∣
wn=0

,

=

∑T−1
j=0 Cn j∑T−1
j,k=0 C jk

ΔV. (13.27)

In the case where there are no correlations (i.e. when Ci, j = δi, j), one can check this
expression directly:

E[vn|ΔV] =

{
1
T ΔV, for 0 ≤ n ≤ T − 1;
0, otherwise.

In the absence of correlations, the constraint that ΔV =
∑T−1

j=0 v j is only effective when
n ∈ [1,T ]. Within this interval, all of the n’s play a symmetric role.

The result is even more interesting in the limit of long-range autocorrelations
C(�) ∼�	1 c∞�−γ, with 0 < γ < 1. When T 	 1, one finds

E[vn|ΔV] ≈ ΔV
2− γ
2T

[(
1− n

T

)1−γ
+

( n
T

)1−γ]
, 1 ≤ n ≤ T − 1. (13.28)

The propagator model predicts that the average change in mid-price between t = 0
and t = T − 1 is given by

R(ΔV,T ) = E[mT −m0|ΔV],

=
∑

0≤n≤T−1

G(T − n)E[εn|ΔV]+
∑
n>0

[G(T + n)−G(n)]E[εn|ΔV],
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where εn is the sign of vn (i.e. the sign of a Gaussian variable with a given conditional
mean and variance, as computed in Equation (13.27)).

If E[vn|ΔV]� 1 and T 	 1, then E[εn|ΔV] simplifies to

E[εn|ΔV] ≈
√

2
π
E[vn|ΔV].

Using also that for n	 1, the propagator can be approximated as G(n) ≈ Γ∞/nβ, one
finally finds that in the large-T limit, the aggregated impact is given by

E[mT −m0|ΔV] ≈ A(β,γ)Γ∞
ΔV
T β
,

where A(β,γ) is a numerical constant that depends on β and γ.
When ΔV reaches values of order T , one finds that E[εn|ΔV] → 1 and E[mT −

m0|ΔV] ∝ T 1−β. The propagator model therefore yields the following result for the
aggregate impact:

R(ΔV,T ) = Γ∞T 1−β ×Fprop

(
ΔV
T

)
, (13.29)

where Fprop(u) is a scaling function that is linear for small arguments and that
saturates for large arguments. Observe that Equation (13.29) has the same functional
form as Equation (11.11), which describes empirical observations and that we recall
here for convenience:

R(ΔV,T ) � 〈s〉T χ ×F

(
ΔV

V̄bestT κ

)
.

However, the propagator prediction makes incorrect predictions for the exponents χ
and κ. Empirical data suggests χ ≈ 0.5 – 0.65 and κ ≈ 0.75 – 0.9 (see Section 11.4),
while the propagator model predicts χ = 1− β ≈ 0.75 and κ = 1. Note, however, that
the model correctly predicts the difference χ−κ = 0.25 which governs the scaling of
Kyle’s lambda with T (see Chapter 15).

13.4.4 Metaorder Impact
We now illustrate how the propagator model can also help to illuminate the peak
impact and impact path of a metaorder. Throughout this section, we also make some
additional assumptions about metaorder execution. Specifically, we assume that a
metaorder of total volume Q is executed in N separate child orders, each of size
υ, and that the (trade) time between each child order is equal to n. We describe
such a metaorder as having a participation rate f = 1/n. In the present context, we
assume that all trades have unit size, so the participation rate of a given metaorder
is simply equal to the fraction of the total number of trades that it comprises. We
also assume that the sign of the metaorder is uncorrelated with the sign of all other
transactions.

We arbitrarily set the time of the first trade to be t0 = 0. Due to our assumptions,
trades occur at time 0,n,2n, . . . ,T = (N − 1)n, such that the total execution time of
the metaorder is T = (N − 1)n. Conditional on the presence of a buy metaorder, the
propagator model predicts that the average price change between t0 and some t ≤ T
is given by

Ipath(t) = E[mt −m0|metaorder] =
�t/n�∑
k=0

I1(υ)G(t− kn),

where I1(υ) is the lag-1 impact of a child order of size υ. In what follows, we assume
that lag-1 impact is constant, so we can absorb the I1(υ) term into the definition of
G, to lighten notation.
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Approximating the discrete sum as an integral, and using the Euler–McLaurin
formula, one finds:

Ipath(t) ≈
∫ t/n

0
dk G(t− kn)+

1
2

[G(1)+G(t)]+ . . . .

If we also assume that the propagator G(t) decays as Γ∞t−β for large t, with β < 1,
then to leading order

Ipath(t) ≈ Γ∞
n(1− β)

t1−β.

The impact of such a metaorder peaks at time t = T , with a value given by:

Ipeak(Q, f ) ≈ Γ∞
(1− β)

f β
(Q
υ

)1−β
, (N = Q/υ	 1). (13.30)

This peak impact is concave in the volume of the metaorder Q, and increases with
the participation rate f (or, alternatively, decreases with the execution horizon T ≈
Q/(υ f )). In other words, expressing Equation (13.30) in terms of T instead of f :

Ipeak(Q,T ) ≈ Γ∞
(1− β)

T−β
Q
υ
, (N = Q/υ	 1). (13.31)

This corresponds to a linear impact, with a slope that decays as T−β, in agreement
with Equation (13.29). This result is not surprising: the propagator model is linear,
so impacts add up.

Therefore, although for a fixed f it is qualitatively similar to the square-root
impact law for β < 1/2, the metaorder impact law in the propagator framework
is fundamentally linear. Furthermore, the model predicts that the impact of a
metaorder scales like f β or T−β, which is not consistent with experimental data: as
we emphasised in Section 12.3, the impact of a metaorder is in fact only weakly
dependent on the time to completion T . Hence, while the propagator model captures
some aspects of the square-root law, it needs to be amended in some way to reflect
the behaviour of real markets, as observable in empirical data. We will examine two
such amendments in Section 13.4.5 and in Chapter 19.

13.4.5 The LMF Surprise Model
In Chapter 10, we saw that a plausible explanation for the long-range autocorrelation
of market order signs is the power-law distribution of metaorder volumes. In the
context of the Lillo, Mike and Farmer (LMF) model, we showed that in order to
account for an autocorrelation function C(�) that behaves as �−γ, the probability P(L)
that a sequence of market order signs (chosen uniformly at random among all such
sequences) has length exactly L should decay as L−2−γ for large L.

We will now show that in the extreme case where there is only a single active
metaorder at each time step, it is straightforward to construct the best predictor
for the next sign. This expression turns out to be very different from the linear
combination of past signs that we previously obtained within a DAR description in
Equation (13.20).

Consider a situation in which the previous � market orders have all had sign εt =
+1. If it is known that only one metaorder is active at this time, then the probability
that the next market order sign is also +1 is given by

P+(�) =

∑∞
L=�+1 P(L)∑∞

L=� P(L)
≈�	1 1− γ+ 1

�
.

Within the LMF framework, the best predictor of the next sign is

ε̂t = +

(
1− γ+ 1

�

)
− γ+ 1

�
= 1− 2

γ+ 1
�
.
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The history-dependent (or “surprise”) model, which generalises the linear propagator
model from Section 13.3, then reads

rt =mt+1 −mt =G1
(
εt − ε̂t

)
+ ξt, (13.32)

with

rt =

⎧⎪⎪⎨⎪⎪⎩ 2G1

(
γ+1
�

)
+ ξt, if ε = +1,

−2G1 + 2G1

(
γ+1
�

)
+ ξt, if ε = −1.

The impact of a sequence of � = Q consecutive trades in the same direction is then

ILMF(Q) = E[m� −m0] ≈Q	1 2G1(1+ γ) ln Q.

Note that this behaviour is quite different from the prediction of the propagator model
(see Equation (13.30)), which instead leads to Iprop(Q) ∼ Q1−β.

In the LMF model, the average price paid to execute the Q child orders is given by

pex. =m0 +
2G1(1+ γ)

Q

Q∑
L=1

ln L.

For Q	 1, this expression can be approximated as

pex. ≈m0 + 2G1(1+ γ)(ln Q− 1),

≈m� − 2G1(1+ γ).

At the end of a long metaorder, one does not need to wait long before a trade in the
unexpected direction takes place. This trade has a large price impact of approximately
−2G1. Therefore, soon after the end of the metaorder, the price reverts to

m∞ ≈m� − 2G1 > pex.,

which exceeds the average paid price by an amount 2γG1. This highlights a problem
with this model: the price is a martingale thereafter, so the metaorder would be
profitable on average. This represents an arbitrage opportunity that is absent from
real markets.

How might we alter the surprise model in Equation (13.32) to address this
weakness? One possible approach is to allow the impact parameter G1 to be
dependent on time and/or market conditions. Then, one way to remove the above
arbitrage is to assume that the longer the metaorder has lasted, the larger the
coefficient G1:

G1(�) :=G0�
δ, δ > 0. (13.33)

One now finds that the impact of a sequence of Q trades in the same direction is

Iδ(Q) ≈ 2G0(1+ γ)
Qδ

δ
,

and that the average price paid to execute the Q trades is

pex. ≈ p0 + 2G0
(1+ γ)
δ(1+ δ)

Qδ.

Long after the metaorder execution ends, the price reverts to

m∞ ≈m� − 2G0Qδ (Q	 1).

To make further progress with our study of this model, we now make the additional
assumption that the execution price is fair, in the sense that the average execution
price is equal to the long-term price. This leads to the condition

pex. =m∞ ⇒ 2G0
(1+ γ)
δ(1+ δ)

�δ = 2G0(1+ γ)
�δ

δ
− 2G0�

δ,

⇒ (1+ γ)
(1+ δ)

(
1− 1

δ

)
= 1,

⇒ δ = γ.
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This idea, promoted by Farmer, Gerig, Lillo and Waelbrouck (FGLW), leads to
a concave impact for metaorders, Iδ(Q) ∼ Qδ, with an exponent δ that is equal to
the decay exponent of the autocorrelation of the trade-sign series, δ = γ < 1. In this
framework, the impact decay is nearly immediate, because the market is assumed
to detect when the metaorder has ended. Interestingly, the FGLW calculation can
be framed using slightly different language, in the context of the Glosten–Milgrom
model (see Section 16.1.6).

The FGLW model also suggests a non-linear generalisation of the linear
propagator model, where

G1(̂εt) =G0

(
1+Aε̂2

t + ...
)
,

where A is a constant and by symmetry the term linear in ε̂t is absent. In this
set-up, the value of G1 increases as the level of predictability increases, similarly to
Equation (13.33). Setting A = 0 recovers the linear propagator model with G1 =G0.
To date, the properties of this extended propagator model still remain to be explored.
We present another (arguably better-motivated) non-linear generalisation of the
propagator model in Chapter 19.

13.5 Conclusion

In this chapter, we have presented a simple linear model that expresses price moves
in terms of the influence of all past trades. The model assumes that each trade
should be treated on the same footing (independently of its size or how aggressive
it is) and leads to a reaction impact in the direction of the trade, with dynamics
encoded in a lag-dependent function G(·), called the propagator. In the model, the
immediate reaction impact of a trade is given by G(1) and the long-term reaction
impact of a trade is given by G(∞).

To avoid creating statistical arbitrage opportunities (such as trends), the fact
that real trade signs are long-ranged autocorrelated imposes that G(�) has some
special shape. In Section 13.2, we showed that if the autocorrelation of trade
signs decays as �−γ with γ < 1, then G(�) must decay to zero as �−β, with
β = (1 − γ)/2. This very slow decay, which we call long-range resilience, means
that the distinction between “transient” and “permanent” impact is necessarily
fuzzy, at least empirically. Furthermore, even when the permanent impact of a
single trade G∞ is zero, the cumulative observed impact R∞ of that trade and all
of its correlated kinship can be non-zero, as a result of the subtle compensation
between trade correlations and impact decay (see Equation (13.18)). Intuitively,
this compensation reflects the way that liquidity providers and liquidity takers
offset each other, to remove most of the linearly predictable patterns that their
(predictable) actions would otherwise create.

Despite the fact that it only deals with market orders, we have argued that
the propagator model is actually an effective reduced-form description of the
full interplay between market orders, limit orders and cancellations. We have
also noted that it is a simplified, and arguably more intuitive, specification of
Hasbrouck’s classic VAR model.
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Although very illuminating, the propagator model suffers from several draw-
backs. For example, the linearity of the model is at odds with empirical findings
such as the square-root impact of metaorders. Resolving these problems requires
a more sophisticated, non-linear version of the propagator model, which we
introduce in Chapter 19.

Take-Home Messages

(i) The simple, linear propagator model assumes that all market orders
have an identical, time-dependent impact on the price, consisting of
both an immediate reaction and a lagged reaction.

(ii) Because market order signs are positively autocorrelated, if impact
was constant and permanent, then the mid-price would be strongly
super-diffusive, and therefore predictable. To ensure that the
mid-price series is diffusive, we must assume that the impact of a
market order decays over time.

(iii) To balance the power-law (long-range) autocorrelations of trade signs,
the propagator must decay slowly as well. We call this behaviour,
in which the effect of an action takes a long time to vanish, the
long-range resilience of markets.

(iv) The propagator kernel G can be fitted empirically from the two-point
correlation function of market order signs C and the response function
R, through a linear equation.

(v) In history-dependent impact models, impact is permanent but depends
on the history in such a way that prices are unpredictable. In a DAR
hypothesis for the order flow, one recovers exactly the propagator
model.

(vi) Despite its many appealing properties, the linear propagator model
is too simple to reproduce some empirical regularities observable in
real markets. Addressing these deficiencies of the model involves
considering a more complex, non-linear framework, which we
introduce in Chapter 19.

13.6 Further Reading

See also Section 10.7.
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models for the impact of order flow on prices I. Propagators: Transient vs. history
dependent impact. Available at SSRN: https://ssrn.com/abstract=2770352.
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14

Generalised Propagator Models

When I want to understand what is happening today or try to decide what will
happen tomorrow, I look back.

(Omar Khayyám)

14.1 Price Micro-Mechanics

In the previous chapter, we studied a class of propagator models that consider the
change in mid-price that occurs between subsequent market order arrivals. The
models that we studied in that chapter consider all market order arrivals on an
equal footing, irrespective of their size and how aggressive they are.

In the present chapter, we extend those models in two different ways. First,
we consider a propagator model that partitions market order arrivals according to
whether or not they consume the entire opposite-side best queue upon arrival. We
introduce a mathematical framework that enables us to distinguish the impact of
orders partitioned in this way, and we show that this extension helps to solve some
of the problems with the one-event-type propagator models from the previous
chapter.

Second, we introduce a generalised propagator model that considers not only
market order arrivals, but also some limit order arrivals and cancellations. In this
framework, we are able to track all events that cause price changes, and we are
therefore able to monitor the evolution of impact on a more microscopic scale.
However, we also argue that performing such a granular analysis of order flow
requires working with rather complex models, which can be difficult to calibrate.
We then turn to a more intuitive formulation of these multi-event propagator
models that naturally encompasses the idea of history-dependent liquidity.

14.2 Limitations of the Propagator Model

The propagator model that we introduced in Chapter 13 is a reduced-form
description of LOB dynamics. The model assumes that all market orders lead

This chapter is not essential to the main story of the book.
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to the same impact dynamics, characterised by the propagator G(�), and does
not explicitly track other LOB events that occur between market order arrivals.
Clearly, this approach neglects many effects that could be useful for understanding
or modelling price changes in real LOBs. For example, partitioning market
orders according to whether or not they consume all the available liquidity
at the opposite-side best quote is very useful, not only for assessing whether
such market orders will cause a change in mid-price immediately upon arrival,
but also for predicting the string of other LOB events that are likely to
follow.

As we detailed in Section 13.2, calibrating the one-event propagator G(�)
only requires access to data describing the response function R(�) for � ≥ 0 (or
alternatively S (�≥ 0)) and the autocorrelation function for market order signs C(�).
This information is readily available in many empirical data sets.

Once G(�) has been calibrated, the propagator model leads to a precise
prediction for the lag-dependent volatilityD(�)=V(�)/� in terms of G(�) and C(�),
with the only further adjustable parameters arising from the variance Σ2 of the
news (or other types of events) contribution ξt (see Equation (13.7)). Figure 13.2
shows the result of performing this analysis. As the figure reveals, the outcome
is quite disappointing: the model fails to capture all the interesting structure of
the signature plot D(�), and only reproduces the long-term value of D(�) when
choosing a suitable value for Σ2.

In this way, the propagator model makes a falsifiable prediction about the
detailed structure of the signature plot (or lag-dependent volatility D(�)). Recall
that for a purely diffusive process, D(�) is lag-independent, such that volatility
does not depend on the time scale chosen to measure it. If D(�) increases with
lag, then returns are positively autocorrelated, so prices trend; if D(�) decreases
with lag, then returns are negatively autocorrelated, so prices mean-revert (see
Section 2.1.1).

Another weakness of the propagator model concerns the shape of the negative-
lag response function, i.e. R(�) for � < 0. As emphasised above, only the positive
side of R(�) is needed to calibrate G(�). Once this is known, R(� < 0) can be
predicted without any additional parameters. Figure 14.1 shows the results for the
stocks in our sample. In all cases, the empirical R(� < 0) lies above the theoretical
prediction of the propagator model. The discrepancy is quite important and shows
that the simple propagator model fails to grasp an important aspect of the dynamics
of markets.1

1 The discrepancy tends to be smaller for small-tick assets than for large-tick assets; see Taranto, D. E., Bormetti,
G., Bouchaud, J. P., Lillo, F., & Tóth, B. (2016). Linear models for the impact of order flow on prices I.
Propagators: Transient vs. history dependent impact. https://ssrn.com/abstract=2770352.



272 Generalised Propagator Models

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

–50 –40 –30 –20 –10
–8

–6

–4

–2

0

2

4

6

8

0 10 20 30 40 50

R(
�)

 (
tic

ks
)

�

INTC

Empirical
Propagator

R(
�)

 (
tic

ks
)

TSLA

Empirical
Propagator

–50 –40 –30 –20 –10 0 10 20 30 40 50

�

Figure 14.1. (Dashed curves) The response function calculated from the propa-
gator model, fitted using only positive lags, for (left panel) INTC and (right panel)
TSLA. The markers denote the corresponding empirical values.

Why does this discrepancy occur? To address this question, we first rewrite the
response function at negative lags:

R(−�) = 〈εt · (mt−� −mt)〉,
= −〈(mt+� −mt) · εt+�〉,

where the second line is obtained by shifting t to t+ �. The negative-lag response
function therefore tells us how the price change between t and t + � is correlated
with the sign of the market order arriving at time t+�. Intuitively, one would expect
that price changes themselves directly influence the sign of future trades (e.g. that a
price increase motivates more sell orders, everything else being equal, contributing
positively to R(−�), and vice-versa). However, this mechanism is not present in
the simple propagator model, which considers order flow to have no reaction to
price changes.2 As we show below, most of the effect can simply be captured by
treating the non-price-changing market orders MO0 and price-changing market
orders MO1 separately.

14.3 Two Types of Market Orders

As an initial step towards addressing the full complexity of LOB dynamics, we
first extend the propagator model to distinguish between the set of market orders
MO1 (i.e. those that cause a non-zero lag-1 price change) and MO0 (i.e. those that
do not).

2 This mechanism can however be included within Hasbrouck’s VAR model (see Section 13.4.1), and corresponds
to a negative kernelHrv.
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In this section, we still work in transaction time (such that each time a market
order arrives, we increment t by a single unit), and we use the notation πt ∈
{MO0,MO1} to indicate the market order type at time t. The generalisation that
we introduce now is to allow the propagator function to be different for events
of type MO0 than for events of type MO1, such that the mid-price dynamics
obey

mt =mt0 +
∑

t0≤t′<t

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∑
π=MO0,MO1

I(πt′ = π)Gπ(t− t′)εt′ + ξt′

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (14.1)

where I is an indicator function, such that for each t′, one selects the propagator
Gπt′ corresponding to the particular event type that occurred at that time.

To calibrate this model, we simply generalise the response function R(�) to
account for whether a given market order belongs to MO0 or MO1:

Rπ(�) = 〈εt · (mt+� −mt)|πt = π〉 :=
〈εtI(πt = π) · (mt+� −mt)〉

P(π)
. (14.2)

The function Rπ(�) measures the lagged covariance (measured in market order
time) between the signed event εtI(πt = π) at time t and the mid-price change
between times t and t+ �, normalised by the stationary probability of the event π,

P(π) = 〈I(πt = π)〉.

The normalised response function in Equation (14.2) gives the expected (signed)
price change after an event π.

Figure 14.2 shows the behaviour of Rπ(�) for π =MO0 and π =MO1. The figure
paints a more detailed picture of the same phenomenon as we reported for lag �= 1
in Table 11.1, where we saw that R1(1) (which is equal to RMO1(1)) is larger than
R0(1) (which is equal to RMO0(1)). Figure 14.2 shows that R0(�) grows with � for
both small-tick and large-tick assets, whereas R1(�) converges almost immediately
to a plateau value for large-tick assets.

We also define the signed-event correlation function as

Cπ,π′(�) =
〈I(πt = π)εtI(πt+� = π

′)εt+�〉
P(π)P(π′)

, (14.3)

where the event π occurs before the event π′. In general, there is no reason to
expect time-reversal symmetry (i.e. that Cπ,π′(�) is equal to Cπ′,π(�) ≡Cπ,π′(−�)).
We have already discussed this extended correlation matrix in Section 10.2; see
Figure 10.2.
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Using some straightforward algebra, the return response function in Equa-
tion (14.2) can be expressed as a generalisation of Equation (13.14):

S π(�) =
∑
π′
P(π′)

⎡⎢⎢⎢⎢⎢⎢⎣ ∑
0≤n≤�

Cπ,π′(�− n)Kπ′(n)+
∑
n>�

Cπ′,π(n− �)Kπ′(n)

⎤⎥⎥⎥⎥⎥⎥⎦ , (14.4)

where Kπ(�) :=Gπ(�+ 1)−Gπ(�).
Similarly to Section 13.2.1, one can invert the system of equations in (14.4)

to evaluate the (un-observable) Gπ in terms of the (observable) S π and Cπ,π′ .
Figure 14.3 shows the Gπ-propagators for INTC and TSLA. The price-changing
propagator is, as expected, larger in amplitude than the non-price-changing
propagator, but reveals a substantially stronger impact decay.

It is also possible to generalise the calculation of the price variogram V(�) to
this framework, but the calculation is messy, so we present it in Appendix A.4.
In any case, once the Gπ(�) are known, one can again (as in Equation (13.16))
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Figure 14.3. Propagators of (solid curve) price-changing market orders and
(dashed curve) non-price-changing market orders for (top left) INTC, (top right)
CSCO, (bottom left) TSLA and (bottom right) PCLN.

predict D(�) = V(�)/� up to an additive constant Σ2, which corresponds to the
contribution of all events other than market orders. Figures 14.4 and 14.5 show the
results of the two-state propagator model for the negative-lag response function
R(�) =

∑
πP(π)Rπ(�) and the signature plot D(�). The discrepancies noted for the

one-state propagator are clearly reduced. Of particular interest is the fact that most
of the long-term volatility is now explained solely in terms of market order impact.

14.4 A Six-Event Propagator Model

Compared to the simple propagator model from Chapter 13, the extended model
in Section 14.3 fares much better at reproducing both D(�) and the negative part
of the response function R(�). However, this extended model is still imperfect and
suffers from the problem of only considering market orders, while treating limit
order arrivals and cancellations in an indirect, implicit way.
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In this section, we turn to a more granular formulation of the propagator model.
If desired, we could formulate a version of the propagator model that considers
all LOB events at all prices. However, such a model would involve processing a
huge number of events, some of which occur very far away from the best quotes.
Instead, we restrict our attention to LOB events that occur at or inside the best
quotes, because only those event types can cause a change in the mid-price. Such
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events could be market order arrivals, cancellations at the best quotes, or limit
order arrivals at the existing best quotes or inside the spread.

In this extended propagator model, we advance the clock by one unit whenever
any of these events occurs. We again use a superscript 0 to indicate events that
do not create an immediate (in this updated version of event-time) change in the
mid-price, and we use a superscript 1 to indicate events that lead to an immediate
change in the mid-price. We therefore partition the events that we consider into six
different types of events: π ∈ {MO0,CA0,LO0,MO1,CA1,LO1}. For market order
arrivals and limit order arrivals, we write ε=+1 to denote buy orders and ε=−1 to
denote sell orders. For cancellations, we use the opposite signs, such that we write
ε = −1 for the cancellation of a buy order and ε = +1 for the cancellation of a sell
order. For a price-changing event, we call the associated change in mid-price the
step size Δt. We provide a detailed description of these event types and definitions
in Table 14.1.

It can also be useful to introduce another sign, ε† =±1, which identifies the side
of the LOB where each event occurs. We write ε† = +1 for any event happening
on the ask side (i.e. buy market order arrivals, sell limit order arrivals and sell limit
order cancellations) and ε† = −1 for any event happening on the bid side (i.e. sell
market order arrivals, buy limit order arrivals and buy limit order cancellations).

14.4.1 Price Changes in the Six-Event Propagator Model

As in previous chapters, let mt denote the mid-price immediately before the event
that occurs at time t. In this framework, the generalised propagator description of
mid-price changes can be written as

mt =mt0 +
∑

t0≤t′<t

⎛⎜⎜⎜⎜⎜⎝∑
π

I(πt′ = π)Gπ(t− t′)εt′ + ξt′

⎞⎟⎟⎟⎟⎟⎠ , (14.5)

where the sum over π now covers all six event types, defining six different
propagators Gπ(�).

To build a statistical theory of price changes, and in particular to understand how
a certain market event impacts the price, one needs to study the properties of the
time series of events and signs. To do so, we can follow a similar approach as in
Equation (14.1), except that πt can now take six different types. Correspondingly,
the correlation matrix becomes a 6× 6 matrix, with each entry being a function of
time.

How does this correlation matrix behave for real stocks? Plotting the full matrix
graphically is difficult, so we instead summarise its salient features:3

3 For a generalisation of the DAR model of Sections 10.4.2 and 13.3.2 to multi-event-time series, see Taranto
D. E., Bormetti, G., Bouchaud, J. P., Lillo, F., & Tóth, B. (2016). Linear models for the impact of order flow on
prices I. Propagators: Transient vs. history dependent impact. https://ssrn.com/abstract=2770352.
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• Autocorrelations of the “side” variable ε†t (see Figure 14.6) decay as a power
law. In other words, LOB activity persists being either bid-side or ask-side for
long periods of time. This is a more general statement of the same phenomenon
that we observed for market order signs in Chapter 10.

• All non-price-changing correlation functions of the form Cπ0,π0 (�) (with π0 =

MO0,LO0 or CA0) are positive and decay as a slow power law. For price-changing
events (π1 = MO1,LO1 or CA1), this correlation becomes short-ranged for
large-tick stocks.

• When considering all market order arrivals, limit order arrivals and cancellations
together (i.e. mixing between the different event types), autocorrelations
of εt decay exponentially, which indicates that this series is short-range
autocorrelated. Therefore, although each of the separate order-flow sign series
are (separately) long-range autocorrelated, their intertwined series is not. This
is the mechanism of the “tit-for-tat” dance that makes prices diffusive, as we
described in Section 13.2.

• After a market order of either type MO0 or MO1, the flow of limit orders and
cancellations first pushes the price in the same direction for about ten events,
then reverses and opposes the market order flow, particularly through LO-type
events, which correspond to liquidity refill.

• Newly posted price-improving limit orders LO1 attract market orders. More
precisely, LO1 events rapidly trigger a strong opposite flow of MO1 orders and,
for large-tick stocks, of MO0 orders as well. By contrast, LO0 events are initially
followed by market orders in the same direction, before the flow of these market
orders inverts.

In a nutshell, the correlation matrix is consistent with the story that market
participants who seek to execute large volumes split their trades into many different
orders, which they execute via a mix of both market orders and limit orders.
This explains why the diagonal correlation functions are positive and long-ranged.
Liquidity providers step in rather quickly to counteract the correlated flow of
market orders (via liquidity refill).4

Endowed with the knowledge of all correlation functions Cπ,π′(�) and all
response functions Rπ(�), one can invert Equations (14.4) to obtain the six
propagators Gπ(�). Using the expression in Appendix A.4, one can then reconstruct
the lag-dependent volatility D(�) from Cπ,π′(�) and Gπ(�). This recipe works rea-
sonably well for small-tick stocks, but works much less well for large-tick stocks.5

4 At the very highest frequencies, the reaction of the market is actually to first reduce liquidity, before this refill
occurs. This could be explained by some liquidity providers cancelling their previous limit orders and possibly
replacing them slightly further from the spread, in an attempt to buy or sell at a slightly better price immediately
after the trade, before the refill occurs. See Bonart, J., & Gould, M. D. (2017). Latency and liquidity provision
in a limit order book. Quantitative Finance, 1–16.

5 On this point, see Eisler, Z., J. Kockelkoren, J., & Bouchaud, J. P. (2012). Models for the impact of all
order book events. In Abergel, F. et al. (Eds.), Market microstructure: Confronting many viewpoints. Wiley;
and Patzelt, F., & Bouchaud, J.-P. (2017). Nonlinear price impact from linear models. Journal of Statistical
Mechanics, 12, 123404.
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Figure 14.6. Autocorrelation function of the “side” variable ε† for TSLA and
INTC, plotted in doubly logarithmic coordinates. The plot suggests that the “side”
process is a long-memory process.

Why is this so? In the next subsection, we argue that although generalising
the transient impact model seems natural at first sight, attempting to do so
naively can lead to erroneous results. Instead, we argue that an approach of
history-dependent impact makes much more sense when generalised to all LOB
events, and helps control the unavoidable noise that affects the determination of the
propagators, especially for large-tick stocks. While the HDIM and TIM approaches
are equivalent in the single-event case (see Section 13.3), they are actually distinct
modelling strategies in the general case.

14.4.2 A Generalised, History-Dependent Impact Model
If we consider a model that includes all LOB events, then the dynamics of the
mid-price can be exactly represented by the expression

rt = εtΔ(πt, εt, t), (14.6)

where Δ(πt, εt, t) is the amplitude of the price change at time t for an event of type πt

and sign εt. By definition, Δ = 0 for any event π ∈ {MO0,CA0,LO0}. Therefore, any
price change must be due to one event π ∈ {MO1,CA1,LO1}. The definition of the
non-zero Δ’s depend on the type of event that occurs at time t (see Table 14.1). For
example, if π ∈MO1, then Δ is one-half of the gap behind the best ask (for ε = +1)
or behind the best bid (for ε = −1). In contrast to Equations (13.8) and (13.19), the
present model has no need for a term ξt to account for “news” contributions, because
it already includes all LOB events.

Large-Tick Stocks: The Case of Constant Δ
We first consider Equation (14.6) as a model for large-tick stocks. For such stocks,
the LOB is densely populated, and the bid–ask spread and the gap behind the best
quote are usually equal to one tick ϑ. To model this case, we assume that Δ does not



14.4 A Six-Event Propagator Model 281

fluctuate at all, such that
Δ(π0, ε, t) = 0,

Δ(π1, ε, t) = Δπ1 = ϑ/2.
(14.7)

In the propagator framework, this amounts to setting

Gπ0 (�) = 0; Gπ1 (�) = Δπ1 ,

such that all price-changing events have constant impact. In this case, the expression
for Rπ(�) simplifies to

Rπ(�) ≈ Δπ +
∑

0<t′<�

∑
π1

Δπ1P(π1)Cπ,π1 (t′). (14.8)

Therefore, the price response to a given event can be understood as its own
“mechanical” impact (possibly zero) plus the sum of the average impact of all future
events correlated with this initial event. Within the same model, the expression for
V(�) simplifies to

V(�) ≈
∑

0≤t′ ,t′′<�

∑
π1

∑
π1′
P(π1)P(π1′)Cπ1 ,π1′ (t′ − t′′)Δπ1Δπ1′ . (14.9)

For large-tick stocks, these predictions are extremely accurate. In principle, this
model is equivalent to the six-event propagator model with a constrained form for
Gπ0 and Gπ1 . The reason it fares much better than the unconstrained model is that,
after matrix inversion, noisy estimates of Rπ(�) and Cπ,π′ (�) lead to propagators that
have some non-trivial (but spurious) structure, which in turn considerably pollutes
the determination ofV(�).

Small-Tick Stocks: The Case of History-Dependent Δ
We next consider Equation (14.6) as a model for small-tick stocks. For such stocks,
the LOB is sparsely populated, and the bid–ask spread and the gap behind the best
quote fluctuate over time. The propagator model does not address these fluctuations,
since Gπ(�) only depends on the event type, not on the particular state of the LOB
when the event π took place. This provides motivation for considering alternative
approaches to the one that we have developed so far in this chapter. One possible
alternative is to consider a model in which the history of the order flow feeds back
into the present values of Δ(π,ε, t), to reflect how past order flow affects present
liquidity conditions.6

Assuming that all the consequences of buys are the same as those of sells (up to a
sign change), we can extend the model in Equation (14.7) to

Δ(π1, ε, t) = Δπ1 +
∑
t′<t

∑
π′
I(πt′ = π

′)κπ′ ,π1 (t− t′)εt′ε+ ξ̃t, (14.10)

where κπ,π′ are kernels that model the dependence of gaps on past order flow, and ξ̃
describes the part of the evolution of the spreads and gaps that is not explained by
the past order flow. Observe that the entries whose second index corresponds to a
non-price-changing event, for which Δπ0 = 0 by definition, so κπ,π0 must be zero for
all π. For large-tick stocks, the influence kernels κπ,π′ are all extremely small and can
be neglected, leading back to Equations (14.8) and (14.9).

To illustrate what this model encodes, imagine that the event taking place at time t′
is a buy market order with type MO1. This market order exerts a buy pressure on the
LOB. If this pressure scares away sellers, then the gap behind the ask could increase;

6 For more details on the content of this section, and empirical calibration, see Eisler, Z., J. Kockelkoren, J., &
Bouchaud, J. P. (2012). The price impact of order book events: Market orders, limit orders and cancellations.
Quantitative Finance, 12(9), 1395–1419; Eisler et al. (2012) as listed in Footnote 5; and Patzelt, F., & Bouchaud,
J.-P. (2017). Nonlinear price impact from linear models. Journal of Statistical Mechanics, 12, 123404.
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if this pressure attracts other sellers to submit limit orders, then the gap behind the
ask could decrease. The first case would correspond to κMO1 ,MO1 > 0 and the second
case would correspond to κMO1 ,MO1 < 0.

As we now show, the model in Equation (14.10) corresponds precisely to a
generalisation of the model in Equation (13.8). By substituting Equation (14.10) into
the exact evolution equation (14.6), we arrive at

rt = Δπtεt +
∑
t′<t

κπt′ ,πt (t− t′)εt′ + ξt; (ξt := ξ̃tεt). (14.11)

It is interesting to compare Equation (14.11) with the analogue for the transient
impact model in Equation (14.5):

rt =Gπt (1)εt +
∑
t′<t

[
Gπt′ (t− t′ + 1)−Gπt′ (t− t′)

]
εt′ + ξt. (14.12)

By comparing Equation (14.1) and (14.12), one sees that the two models are
equivalent if and only if

Gπ(1) = Δπ
and

κπ,π′ (�) =Gπ(�+ 1)−Gπ(�), for all π′, (14.13)
which can occur if and only if κπ,π′ does not depend on the value of π′. This constraint
cannot hold in general since when the second event is non-price-changing, κπ,π0 = 0,
which would imply that κ is zero in all cases. The only exception is when there is one
possible type of event, in which case we recover the equivalence between transient
impact models (TIM) and history-dependent impact models (HDIM), as we saw in
Section 13.3.

When calibrating κπ,π′ empirically, one in fact finds a significant dependence on
the second event type, absent in transient impact models. The model fares quite well
at reproducing the negative-lag response function and the signature plot of small-tick
stocks. One furthermore finds that for � large enough, and when π′ is a price-changing
event

κπ1 ,π′ (�) ≤ 0, (14.14)
Equation (14.14) recovers the asymmetric dynamical liquidity phenomenon in a
wider context (see Section 11.3.4): past price-changing events tend to reduce the
impact of future events of the same sign, and increase the impact of future events of
opposite sign (recall the content of Equation (14.10)). Note however that κMO1 ,π′ (�)
is positive for short lags: as we mentioned in Section (14.4.1), the knee-jerk reaction
of markets is first to reduce liquidity upon the arrival of aggressive market orders,
before the liquidity refill phenomenon takes place.

14.5 Other Generalisations

In this section, we present other ways to tag different types of LOB events with
a πt term, different from the MO,LO,CA types discussed above. One extremely
interesting case is when some trade identification is possible, allowing one to
distinguish the price impact of different institutions or individual traders. Another
situation where tagging is important is cross-impact, where trading one asset may
impact another correlated asset in a different market.

14.5.1 Trade-Ownership Data

One very interesting case arises when the owner of each trade can be identified. For
example, some data sets include an identification number for each market order,
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which indicates the financial institution (or even individual trader) that initiated
the trade.7 In this case, one could tag each market order with this information, and
define a propagator Gπ(�) for each institution (or trader) π. By fitting such a model
empirically, it could be possible to gain insight into how the impact of specified
actions differs according to who conducted them.

14.5.2 Proprietary Trades versus Market Trades

Another situation where partial identification is possible is when a trading firm
knows about its own trades, but cannot identify those of other firms. In this
situation, the trading firm can tag market orders with a binary variable π ∈
{own, other}. From the empirical determination of the cross-correlation function
Cown,other(�), the trading firm can then determine how its own trades tend to be
anticipated or followed by the rest of the market.

Together with the two empirical response functions Rown(�) and Rother(�), it is
again possible to obtain two propagators, Gown(�) and Gother(�), by inverting a
relation similar to Equation (14.4). When this analysis is possible, one finds that the
two propagators are identical, up to statistical fluctuations.8 Since Gother(�) must
reflect a large fraction of noise trades, the similarity between Gown(�) and Gother(�)
is compatible with the idea that these propagators describe the reaction impact,
which is independent of the information content of the trades (which only shows
up via the correlations with future orders, and on longer time scales). This is in line
with the order-flow view of price formation (see the discussion in Sections 11.1 and
11.2).

14.5.3 Cross-Impact

Another natural extension of the propagator model is to consider how trades for
a given asset j can (directly or indirectly) impact the price of another asset i.
Restricting to market orders, and neglecting order volumes, Equation (13.8) can
be generalised to describe both self- and cross-impact, as follows:9

ri,t =mi,t+1 −mi,t =
∑
t′≤t

Ki j(t− n)ε j,t′ + ξi,t, (14.15)

where ri,t is the return of asset i at time t, ε j,t′ is the sign of the market order
for asset j at time t′, and ξi,t are residuals that capture the component of returns
not directly related to trading (and that are possibly correlated between different
assets). If one considers the joint dynamics of N stocks, then the propagator is

7 Sometimes, only the identification of the executing broker is possible, not the final buyer/seller of the asset.
8 On this point, see Tóth, B., Eisler, Z., & Bouchaud, J. P. (2017). The short-term price impact of trades is

universal. https://ssrn.com/abstract=2924029.
9 Note that because the market order time has no reason to correspond across different assets, t is here

calendar-time and not event-time.
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a lag-dependent N × N matrix. The diagonal terms of this matrix correspond to
self-impact, whereas the off-diagonal terms correspond to cross-impact.

This model can be calibrated by inverting a relation similar to Equation (14.4).
The detailed discussion of this topic is beyond the scope of this book, so we
instead refer to recent papers cited in Section 14.7. The two important empirical
conclusions from these papers are:

• Both the on-diagonal and off-diagonal elements of the propagator matrix decay
as a power-law of the lag, G(�) ∼ �−β, with β < 1, as in the single-asset case.

• Perhaps surprisingly, most of the cross-correlations between price moves are
mediated by trades themselves (i.e. through a cross-impact mechanism) rather
than through the cross-correlation of the residual terms ξi,t, which are not directly
related to trading.

Yet another related situation arises in fragmented markets, when trading
on different venues can impact prices differently, corresponding to different
propagators.

14.6 Conclusion

We conclude our discussion of propagator models by recapping the thread of ideas
that we have explored. We started our discussion in Chapter 13 with a simple
picture in which we interpreted price moves in terms of the impact of market
orders and an extra contribution not related to trades. In this description, we saw
that the long memory of trade signs imposes constraints on how price impact must
decay with time, to ensure that the mid-price remains approximately diffusive.
In the present chapter, we developed our discussion towards a more complete
picture of LOB dynamics, where we interpreted price moves in terms of complex,
intertwined flows (of market orders, limit orders and cancellations) that statistically
coordinate and respond to each other.

We have also seen that the transient nature of price impact, which is described
by the decaying propagator G(�), could equivalently be interpreted as a permanent
but history-dependent impact. In this interpretation, past trades themselves shape
present liquidity in a way that decreases the impact of expected market orders and
increases the impact of surprising market orders (see Section 13.3).

In generalising the propagator model to describe all LOB events, it becomes
apparent that transient impact models (TIM) and history-dependent impact models
(HDIM) are not equivalent, but rather that transient impact models are a special
subclass of HDIMs (see Equation (14.11)). The compelling idea behind HDIMs
is that the current spread and liquidity in the LOB are affected by all previous
LOB events. This allows one to capture in detail how past order flow shapes (on
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average) the LOB in the vicinity of the best quotes, and therefore how the next
event is likely to impact the mid-price.

Similarly to in Section 11.3.4, we again find that liquidity is dynamically
asymmetric in this extended framework. More precisely, past events tend to reduce
the impact of future events of the same sign and increase the impact of future
events of opposite sign, as is required if markets are to be stable and prices
are to be statistically efficient. This is one of the most important messages of
this chapter, and indeed of the whole book: financial markets operate in a kind
of “tit-for-tat” mode, where liquidity providers react to the actions of liquidity
takers, and vice-versa. During the normal-functioning of financial markets, these
retroactions have a stabilising effect that allows markets to function in an orderly
fashion. Any breakdown of the asymmetric liquidity mechanism may lead to
crises.

Finally, we emphasise that the generalised propagator models we have presented
in this chapter are still linear models. When restricted to market orders, they boil
down to the effective propagator model from Chapter 13 (see Section 13.4.2).
Therefore, this family of models cannot account for non-linear effects such as
the square-root impact of metaorders. Reproducing these more complex effects
requires genuinely new ingredients, which we turn to in Chapter 19.

Take-Home Messages

(i) Single-event propagator models are too simple to reproduce some
empirical regularities of real markets. Accounting for the more
complex dynamics observable in empirical data requires extending
this basic framework.

(ii) One possible generalisation is to partition market orders according
to whether or not they change the price. For large-tick stocks, this
partitioning improves the propagator model’s predictions.

(iii) Another possible generalisation is to include all LOB events. Fitting
such a model requires large amounts of data and can lead to expensive
computations, but allows one to measure the impact of limit orders
and cancellations, on top of the impact of market orders.

(iv) In the propagator framework, there are two main approaches to
including all LOB events: transient impact models (TIM), which
assume that all events are characterised by a different (decaying)
propagator, and history-dependent impact models (HDIM), which
describe how each event changes the future impact of all other
events – i.e. of future liquidity.
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(v) The propagator framework can also be generalised to many other
situations, including comparing the impact of different traders’
actions or measuring cross-impact across different assets.
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Tóth, B., Eisler, Z., Lillo, F., Kockelkoren, J., Bouchaud, J. P., & Farmer, J. D.

(2012). How does the market react to your order flow? Quantitative Finance,
12(7), 1015–1024.
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Introduction

Throughout the book, we have pieced together several clues that suggest that the
unpredictable nature of prices emerges from a fine balance between a strongly
autocorrelated order flow and a dynamic price impact. At the same time, however,
we have seen that so-called surprise models can also reproduce this balance with
very few assumptions. It therefore seems that there might be another side to the
coin, which statistical models fail to capture. Are we missing something?

So far, we have regarded order flows as simple stochastic processes with
specified statistical properties. In doing so, we have excluded the strategic
behaviours implemented by real market participants. In reality, however, investors’
actions are clearly influenced by their desire to make profits. Therefore, it seems
logical that strategic behaviour should play an important role in real markets.

In this part, we will take the next logical step in our journey by exploring how
including strategic considerations can shed light on some otherwise surprising
features of financial markets. In doing so, we will examine how markets can
remain in a delicate balance, maintained by ongoing competition between rational,
profit-maximising agents. We will discuss the seminal Kyle model, which provides
a beautiful explanation of how impact arises from liquidity providers’ fears of
adverse selection from informed traders. The model illustrates how impact allows
information to be reflected in the price, and makes clear the important role played
by noise traders – as we alluded to in the very first part of this book. More
generally, the Kyle model, albeit not very realistic, is a concrete example of how
competition and arbitrage can produce diffusive prices, even in the presence of
private information.

Economic models also provide important insights on the challenges faced by
market-makers. We will discuss the work of Glosten and Milgrom, which shows
how the bid–ask spread must compensate market-makers for adverse selection in
a competitive market. The relationship between a metaorder’s slippage and its
permanent impact will appear as another manifestation of the same idea. This
framework paves the way for richer models of liquidity provision, where inventory
risk, P&L skewness and finite tick-size effects all contribute to the challenge. We
will also discuss how the Glosten–Milgrom model teaches us an important lesson:
that the apparent profit opportunities from “buying low, selling high” around the
spread are completely misleading.
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The Kyle Model

Economists think about what people ought to do. Psychologists watch what they
actually do.

(Daniel Kahneman)

As we discussed in Section 11.1, price impact can be interpreted in two different
ways: as a statistical effect caused by a local order-flow imbalance in a market
otherwise in equilibrium, or as the process by which revealed information is
incorporated into the price. In the previous chapters, we have mainly focused on
the first of these interpretations. In the present chapter, we turn our attention to the
second interpretation. Specifically, we introduce the classic Kyle model, which
seeks to shed light on the mechanism by which private information is gradually
incorporated into prices, via trading. Kyle’s original paper is often cited as the
foundation of the field of market microstructure. The Kyle model shows how price
impact can arise when market-makers anticipate adverse selection in an auction
setting. As we discuss throughout the chapter, the model also makes clear why
even informed traders should act cautiously and use small orders to ensure that
they only reveal their information very slowly.

15.1 Model Set-Up

Consider a single-asset market populated by an informed trader (Alice), a
market-maker (Bob), and a set of noise traders, who behave as follows:

• Alice: At time t = 0, Alice discovers some private information about the price pF

that the asset will have at t = 1. For example, Alice may be an insider trader who
knows that at time t = 1, there will be a public announcement about a takeover
bid at price pF. Alice is the only market participant with access to this (private)
information, so that Alice does not have to worry about other market participants
trying to exploit the same information. Based on her private information, Alice
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chooses a volume Q of the asset to buy (ε = +1) or sell (ε = −1), in such a way
as to maximise her expected profit, when discounting the expected impact cost
of her own trade. Alice has no risk constraints that would limit her position.

• Noise traders: These uninformed traders do not have access to private
information, but rather simply trade for idiosyncratic reasons (for a full
discussion of the role of noise traders in the market ecology, see Chapter 1).
In doing so, the noise traders generate a random order flow with a net volume of
Vnoise, whose sign and amplitude is independent from pF.

• Bob: Bob is a market-maker. He clears the market by matching the net total buy
or sell volume ΔV = Vnoise + εQ with his own inventory, at a clearing price p̂.
Bob’s choice of p̂ is rule-based, and such that he breaks even on average, in a
sense that we make precise below. Bob has no inventory constraints that would
limit his position.

At time t = 1, the price pF is revealed. At this time, Alice’s asset is exactly worth
pF. This assumes that she can buy or sell any quantity of the asset at price pF

without causing impact.
In the tradition of theoretical economics, one then looks for an equilibrium

between Alice and Bob, such that:

(i) Profit maximisation: given Bob’s price-clearing policy, Alice’s signed
volume εQ must maximise her expected gain. She buys/sells at the clearing
price p̂, but the asset will in fact be worth pF, so her gain is given by

G = εQ(pF − p̂). (15.1)

Note again that there is no risk constraint that would limit Alice’s position in
the asset.

(ii) Market efficiency: Bob’s clearing price must be such that EBob
[
pF|ΔV

]
= p̂,

where the expectation is taken using the information available to Bob only
(i.e. without the information known to Alice). This corresponds to a situation
where Bob breaks even on average, given an incoming volume ΔV .

Given that Alice knows all of the above (i.e. she knows how both the noise
traders and Bob will act in a given situation), how should she choose Q to maximise
her expected profit E[G] at time t = 1? For Alice to choose an optimal value of Q
to maximise G, she must consider Bob’s clearing price. Specifically, Alice knows
that Bob has a mechanical rule for choosing p̂ as a function of ΔV , so she must use
this knowledge when deciding how to act.

Bob observes the net volume ΔV , but does not know the value of pF. Since
orders are anonymous, he also does not know the values of ε or Q. However, Bob
knows that Alice knows his price-clearing rule, and also knows that she acts so as
to optimise her gain with the information at her disposal (which he will try to infer
from the knowledge of ΔV).
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We further assume that Bob knows that the net volume executed by the noise
traders is a Gaussian random variable with zero mean and standard deviation equal
to ΣV , and that the mispricing pF− p0 is similarly a Gaussian random variable with
zero mean (over time) and standard deviation σF. The latter quantity is related
to the typical amount of information available to insiders at time 0 but not yet
included in the price.

15.2 Linear Impact

What are Alice’s and Bob’s optimal actions in this market? Consider the case
where all random variables are Gaussian and where Bob’s price-fixing rule is linear
in the order imbalance, such that

p̂ = p0 +ΛΔV, (15.2)

for some impact parameter Λ called Kyle’s lambda. In this framework, one can
show that the solution to this problem (or “market equilibrium”) is self-consistent
and can be fully determined. Indeed, profit maximisation on Alice’s part leads to

Q̂ = argmaxQE[G]; G = εQ× (pF − p0 −ΛΔV). (15.3)

Since the expected value of the random imbalance Vnoise is zero, one has E[ΔV] =
εQ. This leads to a quadratic maximisation problem, with the solution

Q̂ =
1
2

(pF − p0)
Λ

. (15.4)

This result means that Alice should choose Q̂ to be proportional to the mispricing
pF− p̂. Since Bob knows that Alice will do this, he attempts to estimate the value of
εQ̂, when he only observes ΔV . Estimating εQ̂ allows him, using Equation (15.4),
to guess the value of pF used by Alice, and chooseΛ in such a way that his clearing
price p̂ is an unbiased estimate of the future price.

Using Bayes’ theorem, the conditional probability that Alice’s volume is εQ̂,
given ΔV , is

PBob(εQ̂ | ΔV) ∝ P(ΔV | εQ̂)×P(εQ̂),

∝ exp

⎡⎢⎢⎢⎢⎣− (ΔV − εQ̂)2

2Σ2
V

⎤⎥⎥⎥⎥⎦× exp

⎡⎢⎢⎢⎢⎣−2(εQ̂)2Λ2

σ2
F

⎤⎥⎥⎥⎥⎦ ,
where in the second exponential we have used the relation between Q̂ and pF − p0

from Equation (15.4). By merging the two exponentials together, we see that Bob’s
inferred distribution for εQ̂ is Gaussian, with the following conditional mean:

EBob[εQ̂ | ΔV] = σ2
F

ΔV

σ2
F + 4Λ2Σ2

V

. (15.5)
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This in turn converts into Bob’s best estimate of Alice’s view on the future price,
again using Equation (15.4)

p̂ := EBob
[
pF|ΔV

]
= p0 + 2Λσ2

F
ΔV

σ2
F + 4Λ2Σ2

V

. (15.6)

Identifying this expression with Equation (15.2), it also follows that

Λ =
2Λσ2

F

σ2
F + 4Λ2Σ2

V

.

Simplifying this expression provides the following solution for Kyle’s lambda:

Λ =
σF

2ΣV
. (15.7)

By choosing this value of Λ, Bob thus makes sure that the strategic behaviour
of Alice and the stochastic nature of the noise traders combine in such a way that
the realised price p̂ is an unbiased estimate of the fundamental price pF, given the
publicly available information at time t = 0.

15.3 Discussion

The Kyle model raises several interesting points for discussion. First, the mean
impact of an order grows linearly with Q: the Kyle model leads to a linear impact
law. The linear scale factorΛ grows with the typical amount of private information
present in the market (measured by σF) but decreases with the typical volume
of uninformed trades (measured by ΣV). This captures the basic intuition that
market-makers protect themselves against adverse selection from informed traders
by increasing the cost of trading, and benefit from the presence of noise traders to
reduce price impact.

Second, using the result for Q̂ in Equation (15.4), the result for p̂ in
Equation (15.6), and Equation (15.7), it follows that Alice’s gain is given by

E[εQ̂ · (pF − p̂)] =
σ4

F

2Λ(σ2
F + 4Λ2Σ2

V)
,

=
1
2
σFΣV .

Therefore, the conditional expectation of Alice’s gain increases with the amount
of private information and with the overall liquidity of the market, which is
(unwittingly) provided by the noise traders. For typical values of the predictor
(i.e. for values of (pF − p0) of the order of σF), it follows that Q̂ ∼ ΣV , so Alice
contributes a substantial fraction of the total traded volume. This is not very
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realistic in practice: as a common-sense precautionary measure, informed traders
tend to limit their trading to a small fraction of the total volume. Out-sized trades
risk destabilising the market, resulting in a much larger impact cost (see discussion
in Section 10.5).

Finally, the pricing error at t = 1 can be measured as:

V[p̂− pF] =
1
2
V[pF − p0] =

1
2
σ2

F. (15.8)

Therefore, Bob is only able to reduce by one-half the variance of the uncertainty
of the fundamental price known to Alice.

The Kyle model provides a clear picture of the origin of price impact. In the
model, market-makers fear that someone in the market is informed, and therefore
react by increasing the price when they observe a surplus of buyers and decreasing
the price when they observe a surplus of sellers. The model also illustrates that even
though the model permits Alice to enter an infinitely large position, her private
information only leads to bounded profits, because of impact costs.

Note that when moving slightly away from its core assumptions, the Kyle model
becomes a self-fulfilling mechanism. Suppose that market-makers overestimateσF

(i.e. they overestimate the quality of information available to insiders). In reality,
because there is no “terminal time” when a “true price” pF is revealed, such
market-makers will over-react to the order flows when setting the value of p̂. In the
efficient-market picture, these pricing errors should self-correct through arbitrage
from the informed trader (i.e. with a signal to trade in the opposite direction at the
next time steps). This would lead to excess high-frequency volatility. However,
signature plots of empirical data are rather flat (see Section 2.1.4), which instead
suggests that the whole market shifts its expectations around the new traded price,
much as assumed in the Santa Fe model in Chapter 8 (for which σF = 0, which
corresponds to the situation of no information but non-zero impact).

15.4 Some Extensions
There are several simple ways to extend the Kyle model:

(i) One possible extension, due to Kyle himself, is to consider a multi-step set-up
in which the terminal price pF known to Alice only reveals itself at time T . In
the continuous-time limit, in which there are infinitely many steps between the
initial time and the terminal time T , Alice’s optimal trade at any time t < T is
still linear in the mispricing:

ε(t)dQ̂(t) =
ΣV T

σF(T − t)
(pF − p(t))dt, (15.9)

while the impact parameter is independent of time and given by Λ = σF/ΣV .
The resulting price volatility is also constant in time.1 Quite remarkably,

1 The fact that Λ(t) is a constant in a continuous auction equilibrium implies that trading prices have constant
volatility over time and therefore that information is gradually incorporated into prices at a constant rate.
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due to the market-maker’s clearing rule, even in the presence of Alice’s
systematic trading in the direction of the true price pF, the price p(t) remains
a martingale for Bob. A similar property will hold in the Glosten–Milgrom
model (see Section 16.1.5). Contrarily to empirical observations, however, the
multi-time-step Kyle model’s order-sign series is not autocorrelated at all!

In this model, Alice’s aggressiveness increases as t→T . In order to maximise
her profit, Alice’s impact on the price ensures that p(t)→ pF as t → T . This
is intuitively obvious if Alice’s information is certainly true, because any
mispricing would lead to unexploited profit opportunities.

Strangely, however, this convergence is actually driven by Alice’s trading
strategy, Equation (15.9). In other words, if Alice firmly believed that the price
at time T should be equal to some arbitrary value pAlice and Bob again acted as
if Alice was truly informed, then the price would indeed converge to pAlice at
time T .

(ii) Another possible extension is to assume that Alice is risk-averse, so adds
a risk-penalty term of the form −ζQ2 to her objective function, such that
Equation (15.3) instead becomes

G = εQ× (pF − p0 − εΛQ)− ζQ2.

To leading order in ζ, the inclusion of this term decreases the value of Kyle’s
lambda to Λ− ζ2/2Λ. Since Alice’s new risk-aversion term constrains her from
taking big positions, the adverse selection risk is reduced and Bob can offer
more liquidity to the market.

(iii) A third simple extension is to remove the hypothesis that Vnoise and pF − p0 are
Gaussian random variables. In this case, one can still solve Kyle’s model in the
small-volume limit Q� ΣV . Provided that:

• the distribution of the random component of the order flow has a quadratic
maximum around zero, i.e. it behaves as

P(Vnoise→ 0) = P0 −P′′0 V2
noise/2+ . . . ;

• the distribution of pF − pt has a finite variance σ2
F,

then the main conclusions of the Kyle model still hold, in particular that price
impact is linear when Q� ΣV , with a coefficient proportional to σF.

Besides these three, many other extensions and generalisations of the Kyle model
have been considered, for example the role of inventory risk constraints for the
market-maker.2

15.5 Conclusion

The Kyle model elegantly elicits some deep truths about how markets function,
but also fails to capture some important empirical properties of real markets. The
most interesting outcomes of the model are:

• Trades impact prices. In the model, the mechanism that creates price impact is
the market-maker’s attempts to guess the amount of information contained in the
order-flow, and to adjust the price up or down accordingly.

2 See: Cetin, U., & Danilova, A. (2016). Markovian Nash equilibrium in financial markets with asymmetric
information and related forward-backward systems. The Annals of Applied Probability, 26(4), 1996–2029.
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• Impact is linear (i.e. price changes are proportional to order-flow imbalance) and
permanent (i.e. there is no decay of impact). In the context of an LOB, linear
impact is a generic consequence of having a finite density of buy/sell orders in
the vicinity of the price, and permanent impact is a consequence of liquidity
immediately refilling the gap left behind the incoming market order.3 We will
return to this discussion in the context of Walrasian auctions in Chapter 18.

• The impact of trading is inversely proportional to the total volume traded by
noise traders. In other words, the existence of uninformed traders is essential for
the market to function. In the next chapter, we will see that the Glosten–Milgrom
model reaches a similar conclusion: a dearth of uninformed trading can lead to
market breakdown.

• Because of impact, the informed trader must limit her trading volume to optimise
her gains. Therefore, the amount of profit that can be made using private (insider)
information is limited.

When confronted with empirical data, the Kyle model suffers from important
drawbacks. The most obvious one is that the sign of order flow is found to be
completely uncorrelated. This is a consequence of impact being permanent in
the Kyle model. Any correlation in signs would lead to predictable returns, as
emphasised in Sections 10.3 and 13.1. Therefore, in order to capture realistic
market dynamics, the Kyle framework must be extended to accommodate sign
correlations – a topic that we discussed in Chapter 13 and to which we will return
in Section 16.2.1 below.

The fact that impact in the Kyle model is linear and permanent is at odds with the
square-root impact law of Chapter 12. It also leads to the conclusion that returns
and aggregate volume imbalance are related through the very same constant Λ,
independently of the time scale T over which they are computed. This is in strong
contrast with the empirical data shown in Section 11.4, which suggests that Λ(T )
in fact decays as ∼ T−0.25. Clearly, additional features must be included in Kyle’s
model to make it a realistic model of price impact.

Take-Home Messages

(i) The Kyle model is a simple model of price impact with three classes of
agents. The informed trader has private information about the future
price, and chooses a trade volume to optimise her profit. The noise
traders submit a random trade volume. The market-maker acts as
a counterpart for the sum of the trading volumes submitted by the
informed trader and the noise traders, and chooses his clearing price

3 See also Obizhaeva, A., & Wang, J. (2013). Optimal trading strategy and supply/demand dynamics. Journal of
Financial Markets, 16, 1–32.
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to equal his expectation of the fundamental price, given the volumes
he observes – such that his expected profit is zero.

(ii) The informed trader anticipates the market-maker’s clearing price and
therefore optimises her volume to maximise her expected profit.

(iii) In the model, volumes impact the price because of their expected
informational content. This exposes the market-maker to adverse
selection. By adjusting the price (negatively) to order-flow imbal-
ance, the market-maker ensures that on average, impact exactly
compensates for this adverse selection.

(iv) When all distributions are Gaussian, the impact scales linearly with
the informed trader’s volume. The proportionality coefficient is often
called Kyle’s lambda.

(v) The value of Kyle’s lambda measures market (il-)liquidity. The larger
the coefficient, the more a given volume impacts the price and the
more expensive trading is.

(vi) The larger the number of noise traders, the more liquid the market
is. In this sense, a market needs uninformed participants to function
smoothly.
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The Determinants of the Bid–Ask Spread

Another issue brought to the fore by the crisis is the need to better understand
the determinants of liquidity in financial markets. The notion that financial assets
can always be sold at prices close to their fundamental values is built into most
economic analysis. . .

(Ben Bernanke)

As we discussed in Chapter 1, organising a market to ensure fair and orderly
trading is by no means a trivial task. As we also discussed in Chapter 1,
transactions can only take place if some market participants post binding quotes
to the rest of the market, in the sense that they specify prices at which they agree
to buy or sell a specified quantity of an asset. By posting these quotes, liquidity
providers put themselves at risk, because liquidity takers can decide whether or not
they want to accept these offers to trade – and will only do so if they believe that
the price is favourable. Liquidity providers are therefore exposed to a systematic,
adverse bias: while some trades are uninformed and innocuous, other trades may
be informed and be followed by large price moves in the direction of the trade, to
the detriment of the liquidity provider.1

Given this seemingly unfavourable position, why do any market participants
provide liquidity at all? The answer is that many liquidity-provision strategies,
including the popular strategy of market-making, can be profitable in the long
run because a large fraction of trades are in fact non-informed (or very weakly
informed). As we noted in Section 1.3.2, the fundamental consideration for
implementing these strategies in the long run is the balance between the mean
size of the bid–ask spread and the mean strength of adverse impact.

1 As noted by Perold, A. F. (1988). The implementation shortfall. Paper versus reality. The Journal of Portfolio
Management, 14(3), 4–9: “You do not know whether having your limit order filled is a blessing or a curse – a
blessing if you have just extracted a premium for supplying liquidity; a curse if you have just been bagged by
someone who knows more than you do.”

298
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In older financial markets, only a select few market participants were able to
act as market-makers. Due to the large spreads that were typical of these markets,
market-making was a highly profitable business for these individuals. In modern
electronic markets, by contrast, any market participant can act as a market-maker.
As we discuss in the chapter, this important change has made market-making a
highly competitive business that is typically only marginally profitable.

In this chapter, we introduce and study some simple models that help to make
our previous discussions of market-making and the bid–ask spread more precise.
As we will see, modern trade-and-quote data confirms the existence of a close
correspondence between impact, volatility and the bid–ask spread, enforced by
competition between liquidity providers.

16.1 The Market-Maker’s Problem

Market-makers attempt to earn profit from exploiting the difference between
the bid- and the ask-price using (primarily) limit orders. Understanding how to
choose the value of the bid–ask spread is a question of paramount importance
for a market-maker: choosing a value that is too small will leave a market-maker
under-compensated for the adverse selection risk inherent in implementing the
strategy; choosing a value that is too large will prevent the market-maker from
conducting any trades, as other liquidity providers will offer trades at better prices.

We begin by examining one of the first models to formalise the issue of adverse
selection in an LOB framework. This model was originally due to a paper from
Glosten and Milgrom in 1985, and is close in spirit to the Kyle model that we
discussed in Chapter 15. As in the Kyle model, one assumes that some market
participants are informed, in the sense that they have access to private information
about the price of the asset at some future terminal time. Other market participants
are either uninformed (even if they may believe otherwise!) or trade for other
reasons, without any view on the future price.

16.1.1 Break-Even Quotes

In the model, the informed and uninformed agents trade with a single market-maker,
who we again call Bob. Bob chooses a bid-price b, at which he places a unit volume
for purchase, and an ask-price a, at which he places a unit volume for sale. We
assume that Bob chooses the values of b and a so as to ensure he has no ex-post
regrets, in the sense that the true price of the asset (revealed after the trade) is on
average equal to b if an agent sold (and Bob bought) and is on average equal to
a if an agent bought (and Bob sold). This quote-setting rule allows Bob to break
even on average. In other words, we assume that Bob is risk-neutral and that he
does not increase the bid–ask spread to compensate for the variance and skewness
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of his payoff (see Section 1.3.2). This is justified in a competitive situation, which
pushes any risk-compensating premium to small values.

In addition to the market-maker, the Glosten–Milgrom model assumes that the
market is populated by a set of liquidity takers. Each liquidity taker i maintains a
private (idiosyncratic) valuation p̂i, which is a random variable. If i is an informed
trader, then p̂i is positively correlated with the terminal value pF; if i is an
uninformed trader, then p̂i is independent of pF. Each liquidity taker i buys or
sells the asset depending on p̂i and on Bob’s quotes. Specifically, if p̂i > a, then
agent i buys the asset from Bob at price a; if p̂i < b, then agent i sells the asset to
Bob at price b. If b < p̂i < a, the liquidity taker does nothing.

Within this framework, the conditions for Bob to have no ex-post regrets are
given by

a = EBob[pF| p̂ > a],

b = EBob[pF| p̂ < b].
(16.1)

Equation (16.1) says that conditional on a buy trade occurring at the ask, the
expected future ask-price (from Bob’s standpoint) is equal to the price paid by the
buyer. Symmetrically, conditional on a sell trade occurring at the bid, the expected
future bid-price (from Bob’s standpoint) is equal to the price paid by the seller.
In both cases, the expectation is taken with respect to the information available to
Bob. As in the Kyle model (see Chapter 15), this is not the full set of information
available in the market. If Bob knew the terminal value pF, then his break-even
condition would simply be a= b= pF, since he would not be subject to any adverse
selection, and all trades would be noise. In general, however, b< a since a sell order
brings a negative piece of information while a buy order brings a positive piece of
information.

16.1.2 A Model with Well-Informed Traders

The simplest model for Bob’s view of the world is that a fraction of agents are
perfectly informed and know the value of pF, while others are uninformed and
their expectation of the future price is symmetrically distributed around the current
price p0:

P(p̂|pF) = (1−φ) f (p̂− p0)︸��������������︷︷��������������︸
uninformed

+φδ (p̂− pF)︸�������︷︷�������︸
informed

, (16.2)

where f (·) is a certain symmetric distribution function, φ is the fraction of informed
traders, and the δ-function reflects that informed traders perfectly forecast the
terminal price.2

2 In fact, adding some uncertainty around pF (i.e. fattening the δ-function) does not change the qualitative
conclusions of the model.
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In order to set his quotes using Equation (16.1), Bob needs to estimate the
distribution of pF, given that someone trades. Bayes’ rule allows him to compute

P(pF| p̂) =
P(p̂|pF)Q0(pF)∫ +∞

−∞ dpFP(p̂|pF)Q0(pF)
, (16.3)

where Q0(pF) denotes the prior distribution of pF at time t = 0. As within the Kyle
framework, we assume that Bob knows Q0(pF), but of course not the value of
pF itself. Bob can now use Equation (16.3) to compute his required conditional
expectations (see Equations (16.1)):

a = EBob[pF| p̂ > a] =

∫ +∞
−∞ dpF pFP(p̂ > a|pF)Q0(pF)∫ +∞
−∞ dpFP(p̂ > a|pF)Q0(pF)

,

b = EBob[pF| p̂ < b] =

∫ +∞
−∞ dpF pFP(p̂ < b|pF)Q0(pF)∫ +∞
−∞ dpFP(p̂ < b|pF)Q0(pF)

.

To give some flesh to these equations, we choose some specific form for the
uninformed distribution f (in Equation (16.2)) and for Q0. Our choice, motivated
by the simplicity of the resulting calculations, reads:

f (u) =
e−|u|/w

2w
; Q0(pF) =

e−|p f−p0 |/σ

2σ
,

where w is a parameter that controls the dispersion of the uninformed price
expectations and σ is proportional to the volatility of the fundamental price.
This choice of distribution allows us to obtain explicit results, but the resulting
conclusions still hold qualitatively for a wide class of distributions.

By performing elementary integrals of exponential functions in the expressions
for a and b, the final result reads:

a = p0 + s/2,

b = p0 − s/2,
(16.4)

with

s =
φ(2σ+ s)es/w

φes/w + (1−φ)es/σ
. (16.5)

Equation (16.5) is quite interesting and exhibits different regimes depending on
the ratio w/σ, as we now detail.
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16.1.3 An Orderly Market

In the case where w ≥ σ, Equation (16.5) has a single solution, which, in the limit
of a small fraction of informed traders (i.e. φ→ 0) reads:3

s ≈ 2φσ+O(φ2), (φ� 1). (16.6)

In other words, when uninformed traders have sufficiently dispersed signals with
an amplitude w that is greater than the width σ of the informed signal, Bob should
set s to be proportional to the product of the price volatility σ and the fraction of
informed trades φ. Note that in the limit φ� 1 one has w	 s: uninformed agents
trade (almost) unconditionally.

Since in reality the ratio of the bid–ask spread s to the daily volatility σ is very
small (say, 0.01 to 0.1), Equation (16.6) suggests that the fraction of trades that
are informed about daily price moves must indeed be small. In fact, the value of
σ for informed traders increases with prediction horizon T as the price volatility
itself (i.e. as

√
T ). The corresponding fraction of informed traders (or the quality

of their information; see Equation (16.9)) must therefore be bounded from above
by 1/

√
T for the bid–ask spread to remain bounded, independent of the horizon of

informed traders. In a nutshell, the fraction of the volatility captured by informed
traders must decrease with the time horizon.

It is also interesting to consider the skewness ς of the distribution of future price
changes. Conditional on a buy trade occurring, the updated distribution of price
changes is P(pF| p̂ > a). In this case, what is the third moment ς of the distribution of
pF − a? To first-order in φ (assumed to be small):

ς ≈ ς0 +φ

∫ ∞
0

dpF (pF − p0)3Q0(pF)[∫ ∞
−∞ dpF (pF − p0)2Q0(pF)

]3/2
,

where ς0 is the unconditional skewness of price changes, and the second term is
strictly positive. Hence, even for a symmetric unconditional distribution of price
changes Q0(pF), observing a buy (respectively, sell) transaction should lead to a
positively (respectively, negatively) skewed distribution of realised price changes
pF − a.

One can in fact easily remove the distracting contribution of ς0 by studying the
skewness of the random variable

U := I p̂>a(pF − a)+ Ip̂<b(b− pF),

which simply represents the P&L of market orders. Again, to first-order in φ, it
follows that ς(U)∝φ. Figure 16.1 shows the (low-moment) skewness of U, estimated
as the difference between the median and the mean (scaled by the r.m.s.), as a
function of the time horizon T , and measured in market order event-time. We estimate
pF as the mid-price T market orders later,

Ũ(T ) := I p̂t>at (mt+T − at)+ I p̂t<bt (bt −mt+T ). (16.7)

For the small-tick stock (TSLA), the skewness is positive and decays roughly as
1/
√

T , as predicted by the Glosten–Milgrom model. The skewness is however very

3 This can easily be seen by assuming that s can be expanded as cφ+ c′φ2 + o(φ2), then plugging this expression
into Equation (16.5). Identifying the two sides of the equation order by order in φ gives Equation (16.6).
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Figure 16.1. Skewness of Ũ(T ) (defined in Equation (16.7)), estimated with the
low-moment difference between its median and its mean, as a function of the time
horizon T , measured in market order event-time for INTC and TSLA.

small, even on short time scales, suggesting again that the fraction of informed
trades is itself very small. For the large-tick stock (INTC), the skewness quickly
becomes negative, in contradiction with the Glosten–Milgrom framework. In the case
of large-ticks, however, we know that the bid–ask spread is bounded from below and
the Glosten–Milgrom argument must be amended.

16.1.4 Market Breakdown

We now consider the more interesting case of Equation (16.5), where w < σ. In
this case, uninformed agents do not predict very large price moves, so their signal
rarely exceeds the bid–ask spread and they do not trade much when the spread
is large. Figure 16.2 shows that a second, large-s solution appears in the interval
w∗ < w < σ, where w∗ is a threshold that does not have a simple analytical form.
Competition between market-makers enforces the solution with smallest s.4 But
when w ↓ w∗, the large- and small-s solutions converge before they both disappear
for smaller values of w.

The case with no solutions is particularly interesting: it suggests that the market
breaks down because there is no longer any way for Bob to fix a bid–ask spread
to break even. Put simply, the uninformed traders do not provide enough potential
gains to compensate Bob for the adverse selection that he experiences from the
informed traders, whatever the value of the spread he chooses. In the Kyle model,
where traders send orders before knowing the transaction price, reducing the
number of noise traders results in an increase of the market-impact parameter Λ,

4 Still, one may expect in that case that the spread “hesitates” between the two solutions, leading to interesting
regime shifts.
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Figure 16.2. Numerical solution of Equation (16.5) for φ = 0.1 and σ = 1 and
different values of w. Note that there is a unique solution for w >σ, two solutions
for w∗ < w < σ and no solutions for w < w∗ ≈ 0.22σ.

but without the market breaking down. In both cases, the presence of noise traders
is crucial to ensure orderly trading.

This emergence of market breakdown is one of the most interesting features of
the Glosten–Milgrom model. The effect would still exist even if informed traders
had only partial information about the future price (i.e. when the δ-function in
Equation (16.2) is replaced by a wider distribution). In fact, one can consider the
case where all traders are partially informed, with some uncertainty about the true
future price. For example, we might assume that Equation (16.2) is replaced by a
logistic distribution

P(p̂|pF) =
εe−ε( p̂−pF)(

1+ e−ε( p̂−pF)
)2
, (16.8)

where ε describes the amount of information on the future price that all traders
(except the market-maker) have at their disposal. In the limit of weak information
(i.e. ε→ 0), solving Equation (16.8) leads to

s ≈ εσ. (16.9)

This solution is very similar to the one in Equation (16.6). Again, the solution
disappears when ε exceeds a critical value εc, which corresponds to the case when
market-making becomes impossible because the information available to traders
is too precise.

In summary, markets can only operate smoothly if the number of uninformed
traders is sufficiently high. When market-makers fear that other market participants
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have too much information, they are unable to fix any spread that enables them to
break even, which can lead to a liquidity crisis.

16.1.5 A Dynamical Version of the Model: Quote Updates

The setting of the above discussion was entirely static. What happens after the
first trade has occurred? Throughout this section, we assume that a solution for s
always exists (i.e. w > σ) and that the fundamental price (which Bob attempts to
guess from the order flow) is fixed in time.

Assume that a trade has taken place at the ask at at time t. Bob should now use
the information that the trade has occurred to update his unconditional distribution
of the future price pF, so that at time t+ 1:

Qt+1(pF) = Pt(pF| p̂t > at).

The right-hand side of this expression is simply given by Equation (16.3), with
Q0 replaced by Qt to reflect that we now consider a dynamical model. This, in
turn, allows Bob to fix the next bid- and ask-prices, again imposing a break-even
constraint. The detailed analysis of the induced price dynamics is beyond the scope
of this book, but one can show that the resulting sequence of trade prices is a
martingale that converges to pF at the terminal time when the number of steps
goes to infinity, while the bid–ask spread exponentially decreases in time, because
transactions gradually reveal the signal of the informed agents.

The martingale property (using public information available to the market-
maker) is in fact quite simple to prove. Observe that

pt =

{
at, if the trade at time t is a buy,
bt, if the trade at time t is a sell.

From Equation (16.1), one has that immediately after each transaction t, it must
hold that

Et[pF] = pt.

The expected transaction price at the next trade can therefore be written as:

Et[pt+1] = Et

[
Et+1[pF]

]
,

= Et[pF],

= pt,

which is precisely the martingale property.
Is the exponential spread decay (in time) predicted by Glosten–Milgrom also

observable in empirical data? Figure 4.2 indeed shows that the spread tends to
decay as the day proceeds. In the Glosten–Milgrom framework, this means that
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overnight shocks introduce some uncertainty on the fundamental price, and that
this uncertainty gets progressively resolved throughout the day as smart traders
work out the consequence of these shocks. However, the plot suggests that the
precise dynamics in real markets is more complex than the prediction of the model.
In particular, an exponential fit of the decay is not adequate. Clearly, the idea of a
fixed fundamental price pF that the market strives to discover throughout the day is
grossly over-simplified. In fact, the target price itself changes throughout the day,
making the dynamics somewhat more intricate.

We conclude this section with a remark that is similar to the one that we made in
the context of the Kyle model in Section 15.3. The dynamical update process that
we have considered in this section requires Bob to have an unbiased estimate of
the quantity of information available to informed traders at each instant of time. If
Bob tends to overestimate the information content of trades (perhaps in an attempt
to protect himself against selection bias), then his quote updates are not justified by
the fundamental valuation of the asset. However, if other traders adjust to these new
quotes and change their views on the price, self-fulfilling prophecies and excess
volatility may emerge.5

16.1.6 Metaorders in the Glosten–Milgrom Framework
In the Glosten–Milgrom framework, the permanent impact of a trade is the expected
value of the price, given that the specified trade has taken place. As we discussed in
Section 10.5, however, many traders in real markets do not simply submit individual
market orders, but instead seek to execute large metaorders. To minimise the impact
of their actions, traders typically submit their child orders for a single metaorder
over a period of several days. In the context of the Glosten–Milgrom model, it is
interesting to measure the permanent impact of not just single market orders, but
also of metaorders.

To address this case, we follow Farmer et al.6 and make the additional assumptions
that metaorder executions occur one-after-the-other (and therefore do not overlap),
and that Bob is notified (or is able to infer) every time that a new metaorder execution
begins.

Recall from Section 12.2 that a metaorder has a direction ε and total volume Q,
and is split into child orders. We now assume that each child order has a volume
equal to the lot size υ0 (see Section 3.1.5). Let q denote the volume of the metaorder
executed so far, and let p(q) denote the price set by Bob at that point. Let p∞(Q)
denote the expected price after a metaorder of total volume Q has terminated and
impact has relaxed.

As in the previous section, we assume that Bob sets his price such that each time
he receives a market order, he has no ex-post regrets and breaks even on average.
As we discussed in Section 16.1.5, this can be seen as a martingale condition for the
price. In the present context, these two conditions read:

(i) Martingale condition: Bob’s action makes the price process p a martingale.
Therefore, when a volume q has been executed, the price is such that

p(q) = E
[
p∞(Q) | Q ≥ q

]
. (16.10)

5 For more on this scenario, see also Section 20.3.
6 Farmer, J. D., Gerig, A., Lillo, F., & Waelbroeck, H. (2013). How efficiency shapes market impact. Quantitative

Finance, 13, 1743–1758.
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(ii) Break-even condition: Irrespective of the metaorder size Q, the price must be
such that

1
Q

∫ Q

0
p(q)dq = E

[
p∞(Q)

]
, (16.11)

(where for simplicity we consider volumes and prices to be continuous, not
discrete).

In words, the second condition simply stipulates that

impact cost = E[permanent impact].

This is a metaorder-equivalent condition to the Glosten–Milgrom condition for single
market orders, which reads

half spread = E[adverse selection].

Together with the distribution of metaorder sizes F(Q) := P
[
q > Q

]
, these two

conditions allow one to determine the temporary impact I(q) = p(q) − p0 and the
permanent impact I∞(Q)= p∞(Q)− p0 of a metaorder. Noting that the market-maker
receives a volume flow that stops only when the metaorder is completed, one finds

p(q) =
1

F(q)

∫ ∞

q
dQ f (Q)p∞(Q),

p∞(Q) =
1
Q

∫ Q

0
dqp(q),

(16.12)

where f (q) := −F′(q). By multiplying each of these equations by the denominator
term on the right-hand side, then taking derivatives (using the product rule), one
finds a pair of coupled differential equations:

F(q)p′(q)− f (q)p(q) = − f (q)p∞(q), (16.13)

p∞(q)+ qp′∞(q) = p(q). (16.14)

By substituting the expression for p∞ obtained from Equation (16.13) into
Equation (16.14), we arrive at the following first-order differential equation for p(q):

q

(
F
f

p′
)′
+

(
F
f
− q

)
p′ = 0.

This equation can be solved by introducing an auxiliary function

g(q) :=
F
f

p′(q),

leading to

g(q) =
A

qF(q)
,

where A is a constant.
Finally, using the fact that I(0) = 0, it follows that

I(q) = A
∫ q

0
dq′

f (q′)
q′F(q′)2

. (16.15)

Hence, if metaorder volumes are distributed according to a power-law F(q) ∼ q−1−γ,
where 0 < γ < 1, then for large q, mean impact is asymptotically concave:

I(q) ∝ qδ, δ = γ. (16.16)

The mean permanent impact then follows from the fair-pricing condition:

I∞(Q) ≈
Q→∞

1
1+ δ

Ipeak(Q). (16.17)
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In the special case where γ = 1/2 (see Chapter 10), we recover an asymptotically
square-root impact corresponding to δ = 1/2. This is essentially the argument of
Farmer et al. for a square-root impact law. In this case, the permanent impact is such
that

I∞(Q) ≈ 2
3
Ipeak(Q).

According to the fair-pricing condition, if impact is square-root, then two-thirds of
the peak impact should remain permanent.

The argument that we have presented in this section appears to be quite general,
and is in fact very similar to the one in Section 13.4.5, where we studied impact in the
context of the propagator model when trade signs arrive in sequences whose lengths
are distributed according to a power-law. However, this theory suffers from several
drawbacks. First, the relation between the impact exponent δ and the power-law
exponent 1+ γ for the distribution of metaorder sizes does not hold universally.7

Second, it makes the highly unrealistic assumptions that metaorders appear
sequentially, in isolation, and that the market-maker can detect their start and end.
Third, the model suggests that impact decays instantaneously to its asymptotic
value after the metaorder terminates (see Section 13.4.5), whereas empirical data
reveals that this behaviour is not routinely observed in real markets. Instead, impact
undergoes an initially steep decay, then relaxes very slowly over a period that can
span several days. Finally, it only holds in a large-Q regime, where the volume
distribution does follow a power-law. For small volumes, its prediction deviates from
the square-root law.

However, a strong point for the model is that empirical data suggests real market
dynamics to be compatible with the prediction of a permanent impact equal to about
two-thirds of peak impact. This two-thirds ratio appears to hold for metaorders
that originate from some sort of information, rather than just for liquidity purposes
(see Section 12.7 for recent papers on this point). Like the Glosten–Milgrom
argument, according to which the bid–ask spread compensates for adverse selection,
the fair-pricing argument is more general than the detailed set-up of the above
model.

16.2 The MRR Model

Although inspiring, the Glosten–Milgrom model suffers from a problem: central
to its formulation is the idea of a terminal time where the true price pF is revealed,
and at which people can transact as much as they want. The implicit idea (that
also underlies Kyle’s model; see Chapter 15) is that the market-maker’s inventory
can be fully transacted at the end of the day (say). The common lore is indeed to
assume that one can trade large quantities at the market close without impacting
the price, but this is totally unwarranted. Liquidating the market-maker’s inventory
incurs a potentially large impact cost and makes the Glosten–Milgrom break-even
argument shaky.

Therefore, although the Glosten–Milgrom model is a useful starting point for
thinking about how market-makers might choose to set the quotes that they

7 See, e.g., Mastromatteo, I., Tóth, B., & Bouchaud, J.-P. (2014). Agent-based models for latent liquidity and
concave price impact. Physical Review E, 89, 042805. In this paper, the LMF relation between the exponent of
the order size distribution and the sign autocorrelation exponent γ was assumed. But in Donier, J., & Bonart,
J. (2015). A million metaorder analysis of market impact on the Bitcoin. Market Microstructure and Liquidity,
1(02), 1550008, the metaorder size distribution is observed directly, and the relation δ = γ also fails.
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offer to the rest of the market, its flaws provide motivation for considering other
approaches where the notion of a terminal price is absent, while keeping the idea
of a martingale price.

16.2.1 Martingale Evolution of the Traded Price

One such alternative is the Madhavan–Richardson–Roomans (MRR) model. In
contrast to the Glosten–Milgrom framework, the MRR model does not rely on the
existence of a terminal time or a terminal price. Instead, it considers an underlying
fundamental price pF,t, which evolves over time to reflect both the information
content of trades and unanticipated news arriving in the market. The setting of the
MRR model is very close to that of the propagator model that we discussed in
Chapter 13.

In the MRR model, pF,t coincides with the traded price, and its evolution consists
of two terms: one corresponding to the information content of trades, and the other
to a noise term ξt that captures unanticipated news:

pF,t − pF,t−1 =G∗ × (
εt − ε̂t

)
+ ξt, (16.18)

where the information content of trades G∗ is assumed to be constant (i.e.
independent of time). The first term on the right-hand side of Equation (16.18)
is indeed proportional to the sign surprise εt − ε̂t, where (as in Section 13.3) ε̂t is
defined as:

ε̂t = Et−1[εt].

By construction, the fundamental price (and the traded price) pF,t is a martingale.
Therefore, the long-term expectation of the fundamental price is always such that

Et[pF,t+T ] = pF,t.

In this market, how should Bob set his quotes so as to have no ex-post regrets?
Similarly to the Glosten–Milgrom model, the key to finding the solution for the
MRR model is to note that for both a buy order and a sell order, the expected
realised transaction price at t+ 1 should be equal to the fundamental price:

at+1 = Et[pF,t+1|εt+1 = 1] = pF,t +G∗
(
1− ε̂t+1

)
;

bt+1 = Et[pF,t+1|εt+1 = −1] = pF,t −G∗
(
1+ ε̂t+1

)
.

(16.19)

Another way to think about these expressions is that other traders only trade
with Bob when their information allows them to break even. This is of course a
somewhat unrealistic assumption that can at best be true on average.

In the following sections, we work out several directly testable predictions of
the MRR models, in particular concerning the response function R(�) considered
throughout the book.
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16.2.2 Correlation and Response in the MRR model

By Equation (16.19), it immediately follows that8

st+1 = at+1 − bt+1 = 2G∗,

which is, by assumption, constant in time. Similarly, the mid-price just before the
(t+ 1)th trade is given by

mt+1 =
at+1 + bt+1

2
= pF,t −G∗ε̂t+1.

Using Equation (16.18), the mid-price dynamics can be rewritten as

mt+1 −mt =G∗
(
εt − ε̂t

)
+G∗

(̂
εt − ε̂t+1

)
+ ξt. (16.20)

This equation is somewhat similar to the propagator specification in Equa
tion (13.22), but with an extra term on the right-hand side that is proportional
to the change in the expected sign.

By considering a telescopic sum of expressions of the form in Equa-
tion (16.20), it follows that

mt+� −mt =G∗
t+�−1∑

n=t

(
εn − ε̂n+1

)
+

t+�−1∑
n=t

ξn. (16.21)

By also using that E[̂εnεt] = E[εnεt] when n > t, the response function R(�) (see
Section 11.3.1) can then be expressed in terms of the sign correlation C(�):

R(�) = E[(mt+� −mt) · εt] =G∗(1−C(�)) =
s
2

(1−C(�)). (16.22)

This remarkable relation can be tested empirically (as we will do in the next
section).9 When � → ∞, the asymptotic value of C(�) is 0. Therefore, the
asymptotic value of the response function is

R∞ =G∗ = s/2.

In the absence of any other costs, market-making ceases to be profitable when half
the bid–ask spread only compensates the long-term impact of market orders. This
is precisely the result we anticipated in Section 1.3.2.

Note that strictly speaking, the MRR model is a special case of the formalism
that we have presented, with the additional assumption that the εt series is
Markovian with ε̂t = ρεt−1, such that C(�) = ρ� with ρ < 1. (MRR did not consider
the case where the εt series has long-range correlations).

8 MRR consider the possibility that order processing costs c, or other costs incurred by the market-marker, can be
added to the spread, to arrive at s = 2(G∗ + c). In this more general framework, the spread reflects both adverse
impact and extra costs. We will neglect c throughout the rest of the chapter.

9 In contrast with Equation (16.22), one finds that for the propagator model (for which the second term in
Equation (16.20) is absent), the response function R(�) is a constant, equal to 1−E[̂ε2]. See Section 16.2.4.
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16.2.3 Volatility versus Spread

In the MRR model, the long-term mid-price volatility per trade is given by

σ̃2
∞ = lim

�→∞
V[mt+� −mt]

�
,

=G∗2(1−E[̂ε2])+Σ2,

where the tilde indicates that we work in trade time and Σ2 is the variance of
the noise term ξt in Equation (16.18). Approximating ε̂t by C(1)εt and using
the relation s = 2G∗, the above equation predicts an affine relation between the
volatility per trade and the squared bid–ask spread:10

σ̃2
∞ =

1−C(1)2

4
s2 +Σ2. (16.23)

We will perform empirical tests of this relation in Section 16.3. Observe that if
ϕ denotes the number of trades per unit (calendar) time, then the relationship
between the volatility per trade σ̃ and the (usual) volatility per unit timeσ is simply

σ = σ̃× √ϕ. (16.24)

In the Markovian MRR case C(�)= ρ�, an explicit formula can be derived for σ̃2(�):

σ̃2(�) =
V[mt+� −mt]

�
=G∗2

[
1− ρ2 − 2ρ

�
(1− ρ�)

]
+Σ2. (16.25)

Note in particular that σ̃2∞ ≥ σ̃2(1) (i.e. short-term mid-price volatility does not
exceed long-term volatility).

16.2.4 Interpolating Between the MRR and the Propagator Model
The MRR model surmises that sign surprises impact the traded price, whereas
the propagator model assumes that sign surprises impact the mid-price. In order
to illustrate the difference between these two models, it is conceptually useful to
introduce a mixture model that interpolates between the propagator specification in
Equation (13.19) and the MRR specification in Equation (16.20):

mt+1 −mt =G∗
(
εt − ε̂t

)
+G∗∗

(̂
εt − ε̂t+1

)
+ ξt, (16.26)

where G∗∗ = G∗ recovers the MRR model and G∗∗ = 0 the propagator model.
Alternatively, one can write this as an evolution for the traded price

pt =mt +G∗εt,

as
pt+1 − pt =G∗

(
εt+1 − ε̂t+1

)
+ (G∗∗ −G∗)

(̂
εt − ε̂t+1

)
+ ξt, (16.27)

where the second term vanishes in the MRR model, but leads to a “bid–ask bounce”
(i.e. a short-term mean-reversion of the traded price) in the propagator model.

In this case, Equation (16.22) instead becomes:
R(�) =G∗(1−C(�))+ (G∗∗ −G∗)(1−E[̂ε2]), (16.28)

which is an affine relation between R(�) and 1−C(�).

10 One can show that E[̂ε2]=C(1)2 in fact holds with high numerical accuracy, with corrections smaller than 1%.
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16.3 Empirical Analysis of the MRR Model

In this section, we perform empirical tests of two core predictions of the
generalised MRR model: the relationship between the response function and
the sign-correlation function (see Equation (16.22)) and the relationship between
volatility and the bid–ask spread (see Equation (16.23)).

16.3.1 Response Function and Sign-Correlation Function

Figure 16.3 shows the values of (1−C(1))×R(�)/R(1) versus (1−C(�)) for a large
pool of stocks. The MRR model predicts the relationship between these quantities
to be a straight line with slope 1 and intercept 0 (see Equation (16.22)). Overall,
the MRR equation holds surprisingly well, but has some discrepancies:

• The MRR model appears to fare better for large-tick stocks than for small-tick
stocks, in that the intercept of the regression is statistically different from
zero (and weakly negative) and the slope is statistically larger than one for
small-tick stocks. These biases can be explained by the mixture model; see
Equation (16.28).

• A systematic positive (resp. negative) concavity appears for large � for small-tick
(resp. large-tick) stocks. This means that real price changes exhibit less (resp.
more) resistance than what is apparent at small �. As we discuss in the next
chapter, this suggests that market-makers suffer more (resp. less) from adverse
selection on medium time scales than on short time scales (see Equation (17.12)).
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Figure 16.3. The quantity (1−C(1))×R(�)/R(1) versus (1−C(�)) for a pool of
120 liquid stocks and � ∈ {1,2, · · · ,20}, divided into (left panel) small-tick stocks
and (right panel) large-tick stocks. The dashed lines are regressions fitted to short
lags only (such that 1−C(�)≤ 0.6), with slopes (left panel) 0.956 and (right panel)
1.01, and very small, statistically insignificant intercepts.
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Figure 16.4. (Left panel) The average spread versus 2R(1)/(1−C(1)) for a pool
of 120 liquid stocks. Large-tick stocks are characterised by values of s close to
$0.01. Small-tick stocks are characterised by significantly larger values of the
spread. The dashed line y = x is the MRR prediction. (Right panel) The average
spread 〈st〉 versus 2Rt(1)/(1−Ct(1)), calculated for each 1-hour interval of TSLA
trading during 2015. The dotted line is a linear fit y = 0.47x + 0.03. The dashed
line is the MRR prediction y = x. The average point in the right plot corresponds
to the black point in the left plot.

Note that while Figure 16.3 tests the functional relationship between R(�) and
1−C(�), it does not question the MRR model’s core prediction that R(1) should
equal s× (1−C(1))/2. This is what we report in Figure 16.4, both cross-sectionally
over our pool of stocks (left plot), and for one given small-tick stocks over time, for
which the local spread varies appreciably (right plot). Overall, the MRR relation
between spread, lag-1 impact and correlation is again remarkably well obeyed
across different stocks (left plot). As we will argue in Chapter 17, this relationship
is actually enforced by competition between market-makers, and states that the
fastest market-makers break even on average.

The right panel in Figure 16.4 shows that although the MRR relation
approximately holds on average, some significant deviations occur locally. On the
one hand, market-makers do not increase spreads quite enough in situations where
the impact of trades increases, or when the autocorrelation increases. On the other
hand, the spread is systematically too wide in quieter situations, compensating the
losses incurred in volatile situations.

16.3.2 Volatility and the Bid–Ask Spread

We now turn to the predicted affine relationship between long-term volatility and
the bid–ask spread, Equation (16.23). We approximate the long-term volatility per
trade σ̃∞ by σ̃(� = 20), which is less noisy while still being close to σ̃∞.
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Figure 16.5. Scatter plot of the volatility σ̃2
20 versus average squared spread 〈s2〉t

(measured in squared dollars) for one-hour intervals of TSLA, plotted in doubly
logarithmic coordinates. The dash-dotted lines are linear regressions applied after
smoothing the data with a kernel estimator, yielding y = 0.087x + 0.0011. The
dotted line is the MRR prediction with Σ2 = 0, leading to y = 0.13x.

Figure 16.5 shows a scatter plot of the squared volatility versus average squared
spread 〈s2〉t for one-hour intervals during all trading days in 2015 for TSLA. The
linear fit leads to y = 0.087x + 0.0011, which has a slope smaller than the slope
0.13 predicted by Equation (16.23) with C(1) = 0.69 (from Table 11.2). Note that
with 〈s2〉 ≈ 0.025 for TSLA, one finds that the news component explains roughly
a third of the price variance. This is similar to what Figure 13.2 (right) conveys in
the context of the propagator model.

Interestingly, the plot suggests that there are two regimes: a relatively smooth
cloud of points where the MRR relation is extremely well obeyed with a
zero intercept (i.e. no contribution of the news component Σ2) and more
extreme volatility periods corresponding to scattered points, which are presumably
dominated by exogenous events. These points outside the regular cloud are at the
origin of the non-zero intercept of the linear fit, which agrees well with its intuitive
interpretation.

Turning now to a cross-sectional test of Equation (16.23), we show in
Figure 16.6 the average square volatility per trade σ̃2

20 as a function of s2 × (1 −
C(1)2). The overall agreement with such a simple prediction is quite striking. In
particular, the approximately linear relation between volatility per trade and spread
is clearly vindicated.11 The absence of any visible intercept suggests that the news
contribution Σ2 is itself proportional to the average squared spread. This means that

11 This was first emphasised in Wyart, M., Bouchaud, J. P., Kockelkoren, J., Potters, M., & Vettorazzo, M. (2008).
Relation between bid-ask spread, impact and volatility in order-driven markets. Quantitative Finance, 8(1),
41–57.
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Figure 16.6. Cross-sectional scatter plot of σ̃2
20 versus s2× [1−C(1)2] (measured

in squared dollars) for a pool of 120 liquid stocks traded on NASDAQ. Each point
corresponds to one stock in 2015. The dashed line is the MRR prediction y = x/4.

all individual price movements (jumps included) are commensurate to the average
spread.

16.4 Conclusion

We started this chapter with the traditional partitioning of traders into “market-
makers” and “liquidity takers”, a fraction of the latter possessing some information
about the future value of the asset. In this context, the argument of Glosten and
Milgrom states that the market-maker must open up a spread between the bid-price
and the ask-price, in such a way that the losses incurred due to informed trades are
compensated by spread gains (paid by the noise traders).

As we emphasised in the very first chapter of this book, markets can only
function if liquidity providers are present. The Glosten–Milgrom model elicits a
further constraint: liquidity providing is only viable if the fraction of informed
trades is sufficiently small – or, equivalently, if the average amount of information
in each trade is small. When the information gap is too large, market-makers
retract, leading to a liquidity drought and a breakdown of the market. If the model
is taken seriously, the fraction φ of trades that predict future price moves on a time
horizon T should decrease at least as 1/

√
T , with φ ≈ 1% for T = 1 day.

An important limitation of the model is that it assumes, as in the Kyle
framework, the existence of a terminal time at which the fundamental price pF (say
the closing price of the market) is revealed and the game ends. In reality, some
predictability exists over a wide spectrum of time scales, from high-frequency
signals, which predict price moves over a few seconds, to intra-day signals
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and even signals on much longer horizons. The question of the profitability
of market-making requires a framework where trading is open-ended, with no
particular prediction horizon. We will discuss such a framework in the next chapter.

A simple setting where this question can be addressed is the Madhavan,
Richardson and Roomans (MRR) model, which posits that the traded price pt is
a martingale, with returns linearly related to the sign of the order. This model
is very close in spirit to the “surprise” version of the propagator model, which
rather focuses on the mid-price mt (see Section 13.3). The MRR makes falsifiable
predictions about the impact response function R(�) and the volatility per trade
σ̃. In view of the simplicity of the model, the agreement with empirical data is
remarkable.

In particular, spread and volatility appear as two sides of the same coin, with a
causality that is hard to disentangle. Is spread merely compensating for volatility,
as the Glosten–Milgrom arguments would have it, or is volatility also influenced
by the spread, in the sense that the last transaction price shifts the expectations
of the rest of the market? The success of the MRR model suggests that either a
majority of trades in the markets are truly informed (which is doubtful), or that the
market as a whole statistically adapts to the last traded price.

Take-Home Messages

(i) Marker makers are exposed to adverse selection because they offer
to trade with other market participants, some of whom might be
informed about the future value of the asset.

(ii) The Glosten–Milgrom framework is a stylised model for how
market-makers should set their bid and ask quotes to exactly
compensate for the costs of this adverse selection.

(iii) When liquidity takers are sufficiently uninformed (or misinformed),
market-makers can solve the equations in the Glosten–Milgrom
framework to find break-even quotes. In this framework, transactions
always occur at the a posteriori fair price, and the price process is a
martingale.

(iv) When liquidity takers are too informed, such a solution does not exist,
so market-makers must withdraw from offering trades (or otherwise
accept to make a loss on average).

(v) The MRR model is an example of a market where the
Glosten–Milgrom conditions are met, and in which the transaction
prices follow exactly a lag-1 propagator model.
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(vi) The MRR model makes falsifiable predictions that agree very well
with empirical data; in particular, the volatility per trade is found to
be proportional to the spread.
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17

The Profitability of Market-Making

A market-maker knows the price of everything and the value of nothing.
(After Oscar Wilde)

In Chapter 16, we discussed two models in which the transaction price is a
martingale. This encodes in a strict manner that both the market-maker and the
other trader have on average “no ex-post regrets” about their trades, because the
price of each trade is also the best estimate of future prices. In this set-up, there
is no arbitrage and no profits for market-makers. Although extremely convenient,
one might ask whether this theoretical framework is too strict to account for the
behaviour that occurs in real markets.

In this chapter, we revisit the question of whether simple market-making
strategies can be profitable. Throughout our discussion, we employ as little
theoretical prejudice as possible. This allows us to discuss issues such as inventory
constraints and holding times, which are absent from the martingale approach.

Before embarking into this agnostic, model-free analysis, we first rephrase
the martingale hypothesis for traded prices in a more illuminating way, which
makes it obvious that market-making cannot, in this case, be profitable. The basic
observation is as follows. Since the conditional expectation of all future traded
prices is equal to the last traded price pt, this is true in particular for the expectation
of the next traded price at the bid and the next traded price at the ask. More
precisely, let us denote by ta > t (respectively, tb > t) the time of the next trade at
the ask (respectively, bid), and anext := ata the corresponding value of the ask-price
(respectively, bnext := btb the corresponding value of the bid-price). Then:

E[anext] = E[bnext] = pt.

Therefore, although the next trade may happen either at the bid or at the ask, these
two prices must both on average equal pt, which is a surprising result given that
bt < at at all times!

319
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The intuition behind this apparent puzzle is the following: if the next market
order is a buy, then the corresponding ask-price is most likely to be larger than
pt. If instead one or more sell market orders arrive first, they will impact the price
downwards, such that the next buy order will hit a depressed ask-price, anext ≤ at.
On average, the two effects cancel out in a competitive setting and E[anext] = pt =

E[bnext], as we now demonstrate.1

Let us assume that E[anext] > E[bnext]. In this case, one could devise a
market-making strategy that would profit from the difference: imagine observing
the best bid and ask quotes posted by other traders, then simultaneously pegging
infinitesimal (impact-less) buy and sell quantities at the bid- and ask-prices,
respectively, and waiting for execution. The pegged order to buy (respectively, sell)
will by definition be executed at bnext (respectively, anext), so the expected profit of
the round-trip is E[anext − bnext]. If this quantity was positive on average, it would
mean that the market-makers are not competitive enough, because they could offer
better quotes; if it was negative on average, market-makers would lose money
on average and would have to provide less aggressive quotes. Hence, necessarily
E[anext] = E[bnext].

Note that the above argument implicitly assumes that any limit order placed
at the bid-price or at the ask-price is executed against the next market order.
We will use this hypothesis repeatedly in the next section. The hypothesis is
reasonable for small-tick stocks, where queue-priority effects are negligible. This
can be understood in two different ways. The first is that for small-tick stocks, the
queue lengths at the best quotes are usually short. Because the probability that an
arriving market order consumes the whole best queue is large, traders who place
limit orders at the best quotes are very likely to receive a matching, even if their
limit orders are at the back of the queue. The second is that if the relative tick
size is small, it costs a trader very little to place an order one tick ahead of the
prevailing best bid- or ask-prices, thereby effectively jumping the queue (although
this explanation neglects the possibility that other participants can undercut this
new limit order by placing other limit orders at even better prices).

For large-tick stocks, on the other hand, queues are long and priority
considerations become crucial. Both of the arguments about small-tick stocks fail:
placing a limit order at the best quotes typically means being last in a long queue,
with a very small probability of executing against the next market order, and it is
usually impossible to jump the queue because there is typically no gap between
the bid and the ask. For large-tick stocks, market-makers must therefore compete
for priority, rather than competing for spreads.

1 This argument is originally due to Jaisson, T. (2015). Liquidity and impacts in fair markets. Market
Microstructure and Liquidity, 1(02), 1550010.
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17.1 An Infinitesimal Market-Maker

In line with the argument of the previous section, imagine a market-maker that sub-
mits limit orders to maintain a very small volume υ0 at both the bid- and ask-prices.
For now, we assume that the market-maker has no inventory constraints, and can
therefore conduct any number of buy or sell trades consecutively.

What is the Profit & Loss (P&L) balance of this market-maker? The
market-maker’s tth transaction takes place either at at (when the sign of the market
order is εt =+1) or at bt (when the sign of the market order is εt =−1). One way to
assign a value to each of the market-maker’s transactions is to compare their price
to the mid-price at some later time T . In this framework, the gain or loss from the
tth individual trade, marked-to-market at time T , can be written as

gt = υ0εt

(
mt + εt

st

2
−mT

)
. (17.1)

To understand Equation (17.1), consider a buy market order (εt = +1), which
hits the ask-queue at time t. When this trade occurs, the money received by the
market-maker is υ0at = υ0 × (mt + st/2). The market-maker is then short υ0 of
the asset. At some later time T , the value of this position is marked-to-market at the
mid-price mT , at value −υ0mT .2 The same arguments apply for a sell market order.

We will also assume that there is an additional payment � associated with each
trade. This payment could be a processing or transaction cost (for which � < 0),
a rebate (for which � > 0), or could simply be zero. The effect of this additional
payment is to create an extra gain or loss for the market-maker, equal to υ0�.

In this framework, the total P&L of the market-maker, marked to the mid-price
at time T , is given by

GT = υ0

⎡⎢⎢⎢⎢⎢⎢⎣T−1∑
t=0

θtεt

(
mt + εt

st

2
−mT

)
+ θt�

⎤⎥⎥⎥⎥⎥⎥⎦ , (17.2)

where θt is an execution indicator

θt =

{
1, if the limit order was matched at t,
0, otherwise.

There are no partial fills when υ0 = 1 lot. Therefore, upon a market order arrival, the
market-maker’s limit order at the relevant best quote either fully matches (to the
incoming market order) or does not match at all (due to its unfavourable position
in the queue). For very small-tick stocks, the size of the queue at the best quotes
is typically very small, so it is reasonable to assume that θt = 1 most of the time.
For large-tick stocks, it is much more difficult to obtain a position near the front of

2 This assumption is not crucial in the following, as it would only change a boundary term to the total P&L of
the market-maker, which is negligible when the market-maker inventory is bounded.
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the queue, and large market order arrivals are also more rare. For these large-tick
stocks, it is more reasonable to assume that θt = 0 most of the time, except when
one manages to be at the front of the queue.

By taking expectations of Equation (17.2), we arrive at the expected gain of our
market-maker between times 0 and T :

E[GT ] = υ0

⎛⎜⎜⎜⎜⎜⎜⎝T−1∑
t=0

E

[
θtεt

(
mt + εt

st

2
−mT

)
+ θt�

]⎞⎟⎟⎟⎟⎟⎟⎠ .
To proceed with our calculations, we now assume that θt is uncorrelated with the
value of the spread and the price history.3 Within this approximation,

E[GT ] = υ0E[θ]
T−1∑
t=0

(
E[s]

2
+�−R(T − t)

)
,

where we have used the definition of the response function, Equation (16.22).
From this formula, it is clear that when � > 0 (i.e. when the liquidity taker

pays an additional fee per trade), the effect is tantamount to an upward shift of the
ask-price and downward shift of the bid-price, both of size � > 0, leading to an
increased effective spread from s to s+ 2�.

Assuming that R∞ exists and is finite, one has, for very large T :

T−1∑
t=0

R(T − t) =
T∑

u=1

R(u) ≈ TR∞.

The expected long-term gain of the market-maker is thus given by a balance
between spread, fees and long-term impact:

E[GT ] ≈ Tυ0E[θ]

(
E[s]

2
+�−R∞

)
. (17.3)

Recalling the results of Section 13.2, we have seen that when β > (1 − γ)/2,
impact decays so quickly that the price is sub-diffusive (i.e. mean-reverting) and
R(�) diverges to −∞ in the limit � → ∞. This situation would be a boon for
market-makers, since Equation (17.3) predicts a strongly positive gain in that case.
If, however, it instead holds that β < (1 − γ)/2, then impact decay is too slow
to prevent price trends. In this case, R(�) instead diverges to +∞ when � → ∞,
rendering market-making extremely difficult. The important take-home message
is that market-making is easy when prices mean-revert but difficult when prices
trend. We will present a similar discussion when comparing the profitability of
market orders to that of limit orders in Section 21.3.
3 This assumption is reasonable for small-tick assets, for which θt ≈ 1, but is not justified for large-tick assets, for

which the execution probability increases either when a large market order arrives or when the queue is very
short. This leads to increased adverse selection, which we neglect here – but see Section 17.3.
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17.2 Inventory Control for Small-Tick Stocks

An important problem with the result in Equation (17.3) is that it completely
disregards the fact that the market-maker’s inventory imbalance can become
arbitrarily large. Even if market order signs were uncorrelated, the random
imbalance between buy and sell volumes up to time T would grow like

√
T ,

which would lead to an unbounded market-maker inventory at large times. In real
markets, market order signs are long-range autocorrelated, with an autocorrelation
function C(�) ∼ l−γ, with γ < 1, which leads to an imbalance that grows
even more quickly, as T (1−γ)/2 	 √T . In any case, this imbalance diverges,
positively or negatively, when T → ∞. The risk of the market-maker therefore
also diverges, which indicates that market-makers face the possibility of ruin
due to an adverse market move. To account for this risk, it is necessary for
market-makers to implement some form of inventory control. In this section, we
consider the question of calculating a market-maker’s P&L when applying such
inventory-control limits.

17.2.1 The Problem

Deriving the optimal strategy of our market-maker Bob in the presence of
inventory risk and long-range autocorrelations of market order signs is a very
difficult problem. To gain some intuition, we will assume that the Bob’s
inventory-risk control amounts to him following a mean-reversion strategy that
consists of offering less liquidity at the ask and more liquidity at the bid if he is
already short, and vice-versa if he is already long.

Let ψt−1 denote Bob’s net position after trade t− 1. Given ψt−1, we assume that
the market-maker participates with a volume υt(ε) at the ask (ε = +1) and at the
bid (ε = −1), with:

υt(ε) = υ0 max(1+ κψt−1ε,0), (17.4)

where κ > 0 is a parameter that describes how tightly Bob controls his inventory.
To understand Equation (17.4), imagine that Bob’s inventory is ψt−1 = 1, (i.e. he is
net long one unit). At time t, he will participate with volume proportional to 1+ κ
at the ask and with volume proportional to 1 − κ at the bid, such that he is more
likely to sell and reduce his inventory than to buy and increase his inventory. An
alternative inventory control strategy is described in Appendix A.5.

Recall that for a small-tick stock, one can assume that θt = 1 for most t. In this
situation, the evolution equation for ψt becomes

ψt −ψt−1 = −υt(εt)θtεt,

≈ −υt(εt)εt.
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Mathematically, the difficulty with Equation (17.4) is the truncation at zero,
which prevents the market-maker from offering negative volumes (which would
have no meaning). To proceed with analytical calculations, we simply drop that
constraint,4 which amounts to neglecting the possibility that κ|ψ| exceeds 1. This
simplification allows one to write the evolution of the inventory ψ as a discrete
Ornstein–Uhlenbeck (or autoregressive) process:

ψt = (1− κυ0)ψt−1 −υ0εt. (17.5)

Introducing α := 1− κυ0 yields the solution

ψt = −υ0

∞∑
�=0

α�εt−�. (17.6)

Since we assume that the mean of the order signs is 0, the mean inventory is also
0. Its unconditional variance is given by

V[ψ] = υ2
0

1+ 2
∑∞
�=1α

�C(�)

1−α2
, (17.7)

where C(�) is the market order sign autocorrelation function. The expression (17.6)
shows that in the presence of inventory control, the position of the market-maker
remains finite, and only diverges when κ→ 0 (i.e. when α→ 1).

Neglecting the fees for now (i.e. assuming that � = 0) and assuming zero initial
position (i.e. setting ψ0 = 0), the total expected P&L of the market-maker can be
expressed as

E[G] = ψT mT −
T−1∑
t=0

E

[
(ψt −ψt−1) ·

(
mt +

εt st

2

)]
≈ TE

⎡⎢⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎜⎝υ0εt − κυ2
0

∞∑
�=0

α�εt−1−�

⎞⎟⎟⎟⎟⎟⎠ · (mt +
εt st

2

)⎤⎥⎥⎥⎥⎥⎦ ,
where we have neglected in the second equation the sub-leading boundary term
corresponding to the value of the inventory at t = T . This is justified because the
inventory remains finite as long as κ > 0 (i.e. the inventory does not grow with T ,
see Equation (17.7)).

Let us first look at the term coming from the spread. Neglecting any possible
correlations between the spread and market order signs, one finds

E[s]
2
υ0E

⎡⎢⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎜⎝1− κυ0

∞∑
�=0

α�εt−1−�εt

⎞⎟⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎦ = 1−α
2α
E[s]υ0

∞∑
�=1

α�(1−C(�)). (17.8)

4 We will return to our discussion of this approximation at the end of this section.
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The impact term is slightly more subtle; it reads:

υ0E

⎡⎢⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎜⎝εt − κυ0

∞∑
�=0

α�εt−1−�

⎞⎟⎟⎟⎟⎟⎠ ·mt

⎤⎥⎥⎥⎥⎥⎦ = υ0E [εt ·mt]−υ0
1−α
α

〈 ∞∑
�=1

α�E [εt−� ·mt]

〉
.

(17.9)
In the second term on the right-hand side, we write as an identity:

mt ≡mt −mt−� +mt−�,

and recall that by definition

R(�) = E [εt−� · (mt −mt−�)] . (17.10)

Therefore, one can further transform the above expression as:

υ0E

⎡⎢⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎜⎝εt − κυ0

∞∑
�=0

α�εt−1−�

⎞⎟⎟⎟⎟⎟⎠ ·mt

⎤⎥⎥⎥⎥⎥⎦ = −υ0
1−α
α

∞∑
�=1

α�R(�), (17.11)

where we have used the fact that E [εt ·mt] = E [εt−� ·mt−�].
Gathering all the terms, we finally recover the profit per unit transaction and unit

volume of an inventory-constrained market-maker:

E[G]
υ0T

≈ 1−α
α

⎛⎜⎜⎜⎜⎜⎝1
2
E[s]

∞∑
�=1

α�(1−C(�))−
∞∑
�=1

α�R(�)

⎞⎟⎟⎟⎟⎟⎠ . (17.12)

This expression is only approximate, because we have neglected the non-linearity
in Equation (17.4). Besides, the mean-reversion strategy (17.4) has no reason to
be optimal, so more profitable strategies could possibly exist. Still, in spite of
all our approximations, we recover that for the benchmark MRR case, for which
R(�) = (1 −C(�))E[s]/2, the average profit of the market-maker is equal to 0 for
any value of α. This makes sense in this case: since the transaction price is fair,
any market-making strategy must break even.

We briefly return to the validity of our approximation that relies on the assumption
that |κψ| � 1 with large probability, which we rephrase as κ2V(ψ)� 1. In the limit
κ→ 0, and assuming that C(�) ∼ c∞/�γ for large �, with 0 < γ < 1, one finds

κ2V[ψ] = (κυ0)2 1+ 2
∑∞

k=1α
kC(k)

1−α2
≈ c∞Γ[1− γ](κυ0)γ→ 0.

Therefore, our approximation that 1 − κψ is positive is clearly supported for slow
market-making.

In the other limit α = 1− κυ0→ 0, one finds:

κ2V[ψ] = (κυ0)2 1+ 2
∑∞

k=1α
kC(k)

1−α2
≈ 1,

so our approximation is questionable here. However, in this limit, Equation (17.5)
simply reads

ψt = −υ0εt,



326 The Profitability of Market-Making

so that
κ|ψ| = υ0κ→ 1, with υ0κ < 1.

Therefore, the approximation remains true in this limit as well, and recovers the exact
criterion in the MRR case. In the intermediate cases however, the hypothesis has no
reason to hold precisely.

17.2.2 Break-Even Conditions and Empirical Results

We now study two extreme limits of the general formula in Equation (17.12). We
consider both expressions with� set to zero; for�� 0 one simply needs to replace
s by s+ 2�.

(i) Slow market-making corresponds to a weakly mean-reverting inventory (i.e.
κ → 0 and thus α → 1). In this limit, and assuming that R∞ is finite, one
recovers to leading order the result of the last section:

E[G]
υ0T

=
1
2
E[s]−R∞. (17.13)

This expression is the negative of the average ex-post gain of a market order,
which pays the half-spread but makes the long-term average impact R∞. In the
MRR model, R∞ = s/2 so the slow market-maker makes no profit.

(ii) Fast market-making corresponds to a strongly mean-reverting inventory (i.e.
κυ0→ 1 and thus α→ 0), where the inventory only depends on the last trade.
In this limit

E[G]
υ0T

=
1
2
E[s](1−C(1))−R(1). (17.14)

Within this framework, the least risky market-making strategy (which
corresponds to the fastest possible mean-reversion to zero inventory) has zero
average gain provided

E[s] =
2R(1)

1−C(1)
, (17.15)

which is precisely the MRR break-even condition (see Equation (16.22))
for � = 1. Hence, as noted in the last section, the MRR relation is such that
market-makers break even on average on all time scales. For �= 1, the intuition
here is that when trades tend to be strongly correlated (C(1)→ 1), Bob cannot
easily unwind his position, and the adverse impact is much larger than the
short-term impact R(1) (see also the discussion in Appendix A.5).

Figure 17.1 shows the empirically determined P&L of Bob’s simple strategy
normalised by the average spread, as a function of the inventory control parameter
α= 1−κυ0, where Equation (17.12) is computed using the empirically determined
C(�) andR(�). If one does not account for rebates, the average gain of Bob’s simple
strategy is always negative, with fast market-making strategies (α= 0) faring better
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Figure 17.1. The normalised P&L from Equation (17.12), divided by the average
spread, as a function of the inventory control parameter α = 1− κυ0, and with the
rebate fees � set to zero, for INTC, CSCO, TSLA and PCLN. Note that in the
last two cases, which correspond to large-tick stocks, Equation (17.12) is a priori
not warranted (see Section 17.3).

than slow market-making strategies. The cost per trade is of the order of 0.10 〈s〉
for the small-tick stocks, which is typically larger than the rebate fee�≈ $0.0025.
This suggests that limit orders are in fact used as a cheaper alternative to market
orders for small-tick assets, leading to spreads that are too small on average. For
large-tick stocks, a more detailed discussion is needed (see Section 17.3).

Figure 17.2 shows the phase diagram of market-making in the plane R(1)
vs. E[s]/2, with two lines of slope R∞/R(1) and (1 −C(1))−1, corresponding to
profitable slow market-making, and profitable fast market-making, respectively. In
the MRR model, the two slopes are equal.

17.3 Large-Tick Stocks

For large-tick stocks, the spread is usually equal to its minimum value of one tick
ϑ – which is, by definition, large. Naively, this should benefit market-makers,
since the spread is bounded from below and is therefore artificially large.
However, Bob’s life is not that easy. His P&L (without inventory control) can be
written as

E[GT ] = υ0T

⎡⎢⎢⎢⎢⎢⎢⎣E[θt]
ϑ

2
−

T−1∑
t=0

E[θtεt (mT −mt)]

⎤⎥⎥⎥⎥⎥⎥⎦ .
The position of Bob in the queue is now crucial. If he manages to always be at the
front of the queue (for example if he is the only market-maker in town), he will
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Figure 17.2. The theoretical bounds on the spread as a function of R(1). The
grey line shows the slow market-making profitability bound R(∞)/R(1): slow
market-making is profitable above this line. The black line shows the fast
market-making bound slope 1/(1−C(1)): fast market-making becomes profitable
above this line. Note that some markets are such that the black line is below the
grey line.

be executed against all incoming market orders, so θt = 1. In this case, we recover
exactly the same result as (17.3) for large T ,

E[Gtop
T ] = υ0T

[
ϑ

2
−R∞

]
,

for top-priority limit orders. In the presence of inventory control, Equa-
tion (17.12) also continues to hold if Bob is always at the front of the queue. Hence,
the MRR relationR(�)= (1−C(�))ϑ/2 ensures that even the smartest market-maker,
always at the front of the queue, breaks even (in the absence of further rebate fees).

Now, consider that Bob has a random position in the queue. His limit order
will only be executed at the next transaction if the incoming market order is large
enough, but in these cases one expects the impact of these market orders to be
larger than the unconditional impact across all market orders. More precisely, it is
interesting to study the conditional response function

Rφ(�) = 〈εt · (mt+� −mt)|υt ≥ φVt〉, (17.16)

where υt is the volume of the incoming market order and Vt is the total volume
at the best quote. In words, this response function computes the impact of a
market order that consumes more than a fraction φ of the available volume. In
particular, one recovers the usual unconditional response function when φ = 0 and
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the response function of price-changing market orders when φ = 1:

Rφ=0(�) ≡ R(�), Rφ=1(�) ≡ R1(�).

In Figure 17.3, we show Rφ(�) as a function of φ for � = 1 (corresponding to α= 0)
and � = 20 (corresponding to α = 0.95), for our two large-tick stocks. One clearly
observes that Rφ(�) is an increasing function of φ, which confirms that impact
is larger for more aggressive market orders. Now, consider a limit order with a
relative queue position equal to φ. The corresponding execution indicator θt is
equal to 1 when υt ≥ φVt and equal to 0 otherwise. Since Rφ(�) is an increasing
function of φ, the following inequality holds true:

E[θt]E [εt (mT −mt)]] ≤ E [θtεt (mT −mt)]] ,

where the equality holds only for top-priority limit orders. The adverse selection
suffered by a randomly placed limit order is stronger than the adverse selection
of a top priority limit order, because there is a positive correlation between the
probability to be executed and a large subsequent adverse price move. Hence:

E[Grandom
T ] < E[θ]×E[Gtop

T ].

Looking again at Figure 17.1, one observes that for large-tick stocks, and for a fast
market-maker (α→ 0) with top priority,

E[Gtop
T ]

υ0T
≈ −0.05ϑ.

In the NASDAQ markets,5 typical rebate fees are of the order of 0.25ϑ, leaving
an average total gain per trade equal to about 0.2ϑ for top priority limit orders on
large-tick stocks.6 As the priority of the limit order degrades, one expects adverse
selection costs to increase until the gain per trade (including rebate fees) vanishes.
From Figure 17.3, one estimates a difference of about 0.2ϑ between the average of
Rφ(20) over all values of φ (corresponding to a randomly placed limit order) and
the unconditional response R(20) = R0(20) (corresponding to a top priority limit
order). Hence, randomly placed limit orders roughly break even on average.

17.4 Conclusion

Market-makers earn the spread but suffer from price impact. By formalising the
basic Glosten–Milgrom intuition in a model-free framework, we have shown how

5 Brogaard, J., Hendershott, T., & Riordan, R. (2014). High-frequency trading and price discovery. Review of
Financial Studies, 27(8), 2267–2306.

6 This order of magnitude will be confirmed by an independent calculation in Section 21.4.
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to compute the long-term P&L of a market-maker who is always at the best quotes
and manages inventory risk. The market-maker’s gains depend on the relative size
of the spread and on the lag-dependent response function. For loosely controlled
inventory risk, corresponding to slow market-making, the balance is between
the half-spread and the long-term impact. For tightly controlled inventories, the
balance is between the half-spread and the short-term impact, corrected by the
autocorrelation of the trades. Within the MRR model, spread and impact turn out
to balance each other exactly, for any market-making frequency. Reality is more
complex, however.

Empirical data confirms that market-making in modern electronic markets is
highly competitive. Simple market-making strategies with inventory control are
found to yield negative profits (see Figure 17.1). Smarter market-making strategies,
which include high-frequency signals that help market-makers to decide more
precisely when and where to submit or cancel a limit order, can presumably be
made to eke out a small profit. For large-tick stocks, the main challenge is to gain
time priority in the queue: top-priority limit orders are found to be profitable on
average, after including rebate fees.

In any case, the main practical conclusion is that, like in the MRR model,
market orders and limit orders incur on average roughly equivalent costs – at
least in the absence of short-term information about the order flow and price
changes (see Section 21.3). This equivalence can be seen as a consequence of
competition between market-makers, which compresses the spread to its minimum
value.



17.5 Further Reading 331

Take-Home Messages

(i) If prices are martingales, the expected price of the next trade that will
take place at the ask must equal the expected price of the next trade
that will take price at the bid.

(ii) This illustrates that market-making is a more subtle task than it may
first appear. The main difficulty of market-making stems from the
problem that market-makers cannot choose the execution time and
price at which they trade – and thus earn the instantaneous bid–ask
spread.

(iii) Price impact and fees both offset the potential profits that market-
makers could earn.

(iv) For large-tick stocks, trade prices are not a martingale, due to the
frequent occurrence of bid–ask bounce. However, obtaining limit
order executions for these stocks is difficult, because it typically
requires waiting in a long queue. Therefore, the profitability of
market-making for such stocks is not obvious.
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Introduction

At this point in our journey into financial markets, we have discussed a large
number of major empirical facts, developed microscopic models of the LOB, and
proposed several different paths for explaining impact. We have also seen how
statistical models of order flow can capture some intricacies of the price-formation
process, and how economic models can shed light on some of the effects induced
by strategic behaviour. However, none of the tools or approaches that we have
considered so far can properly account for a crucial empirical fact: the square-root
impact of traded volumes on prices. This suggests that a piece of the puzzle is still
missing.

The square-root impact law has been found in many different markets,
with completely different microstructural organisations. This suggests that the
explanation should not be sought within the strict framework of an LOB, but relies
on a more general – perhaps more fundamental – underlying mechanism.

In this part, we will introduce a very general framework designed for
understanding the behaviour of supply and demand in a complex and dynamic
environment. At the core of this approach lies the following observation, which has
arisen at many points throughout the book: the liquidity shortage common to all
markets suggests that the visible LOB is only the tip of the iceberg, beneath which
lies a large amount of latent liquidity. In the coming chapters, we will argue that
understanding and modelling directly this latent liquidity is key for understanding
how markets behave – and how best to act in them.

The starting point of this discussion will be the free evolution of supply and
demand: how do they behave, irrespective of any transactions that might occur,
and thus also of the clearing mechanism in place? To address this question,
we will introduce a model that provides insight into the vanishing nature of
liquidity around the market price. In contrast to the models that we have studied
so far, this model successfully reproduces the square-root law of impact, while
still resembling the propagator models that we have discussed in the previous
parts.

Of the puzzles that we evoked at the beginning of this book, many answers
may now be found. The flat signature plot can be explained by the actions of
market participants seeking arbitrage opportunities, irrespective of the question
of market efficiency. Excess volatility can be explained by the sheer impact of
noise trading and self-referential feedback loops, without creating any obvious
arbitrage opportunities. Price moves can be explained by the interplay between
information and statistical reaction, in a never-ending tit-for-tat game between
liquidity providers and liquidity takers.
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Of course, this is not the end of the story. Although the latent liquidity
framework is compatible with economic approaches (under some conditions), fully
unifying the approaches still requires a huge amount of work. Throughout this
part, we will highlight the challenges associated with the latent liquidity idea, and
describe some open questions that remain the topic of active research today.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316659335.026
https://www.cambridge.org/core


18

Latent Liquidity and Walrasian Auctions

The world we live in is vastly different from the world we think we live in.
(Nassim N. Taleb)

18.1 More than Meets the Eye

LOBs are designed to aggregate all the buy and sell limit orders from patient
traders, so that they can be matched with the market orders of more hurried
investors. It would therefore be easy to confuse the content of an LOB with the
total supply and demand of a given asset at a given time. However, there are many
reasons to believe that an LOB only reflects a tiny fraction of the true total supply
and demand – which, for the most part, actually remain latent.

One argument for the existence of latent liquidity comes from examining
LOB volumes and order flow. Recalling our discussion in Section 10.5, it is not
uncommon for large players to seek to buy or sell a substantial fraction (say, a
few tenths of a percent up to a few percent) of the total market cap of a given
asset. Since the total outstanding volume in the LOB of a typical small-tick stock
is roughly 10−3 of the market cap, and since the average daily volume (ADV) of
trade is rarely above 0.5% of the market cap, such traders’ execution horizons must
be on the scale of days to weeks. Therefore, at any given time, a large component
of the supply or demand does not appear in the LOB, but instead reveals itself
gradually.

Why do such traders not simply submit very large limit orders to the LOB? By
doing so, they could clearly gain substantial queue priority. However, these limit
orders would also signal to the rest of the market that a very large trader is present,
and would immediately create price impact (remember again the dialogue at the
beginning of Chapter 1). For small-tick stocks, this information leakage clearly
outweighs the gain in queue priority. For larger-tick stocks, the total volume in the
LOB is perhaps ten times larger, but is still just a small fraction of the ADV, so the
drawbacks still far outweigh the benefits.

337
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Another argument for the existence of latent liquidity concerns the shape of the
LOB. As we saw in Chapter 4, real LOBs exhibit a hump-shape that first increases
then decreases with increasing distance from the best quotes, and that eventually
decays to zero at large distances. There is no reason why the true underlying
supply/demand for an asset should be so sharply localised around the market
price.

These arguments suggest the existence of large reserves of liquidity that are
invisible in the LOB but that are present in the minds of market participants. Most
of the orders that would exist if slow traders submitted all their intended limit
orders immediately are simply not revealed in the LOB.

When seeking to understand the impact of large metaorders (including the
square-root law in Section 12.3), this latent liquidity is more important than the
liquidity visible in the LOB. This is because large metaorders are executed on
a time scale much longer than the typical renewal time of the visible LOB, and
they represent volumes that exceed the prevailing volumes at the best quotes. We
therefore need a modelling strategy that is able to describe the dynamics of the
(often unobservable) latent liquidity, including how latent liquidity is perturbed by
a metaorder. This is what we pursue in this chapter.

18.2 A Dynamic Theory for Supply and Demand Curves

The dynamics of the liquidity results from two distinct mechanisms: (i) order
matching and market clearing when transactions take place, and (ii) evolution of
the intentions of traders between transactions. Let us first focus on the market
clearing mechanism.

18.2.1 Walrasian Auctions and Market Clearing

Consider a set of agents in a market that operates in continuous time. At any given
time t, some agents will be considering buying some quantity of the asset, while
others will be considering selling. Each agent has a certain reserve price p, which
is the minimum price at which he or she is willing to sell (respectively, maximum
price at which he or she is willing to buy), and a corresponding volume. The
classical supply curve S (p, t) (respectively, demand curve D(p, t)) represents the
aggregate quantities that the agents are willing to sell below price p (respectively,
buy above price p) at time t (see Chapter 1). However, as we discussed in the
previous section, only a small fraction of the total supply and demand is revealed
in the LOB. Instead, most such supply and demand remains as unexpressed trading
intentions. This is what we define as latent liquidity.
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Figure 18.1. (Left panel) Illustration of the supply and demand curves (SD),
and the resulting clearing price p∗ according to Equation (18.1). (Right panel)
Corresponding marginal supply and demand curves (MSD).

To model the dynamics of the total liquidity (both expressed and latent), we
introduce the marginal supply and demand curves (MSD curves)

ρ−(p, t) = ∂pS (p, t) ≥ 0;

ρ+(p, t) = −∂pD(p, t) ≥ 0.

As illustrated by the right panel of Figure 18.1, the MSD curves can be regarded
as the density of supply and demand intentions in the vicinity of a given price. It
is the analogue of the LOB in the present theoretical framework.

Let us assume the market is cleared by a succession of auctions, such that the kth
auction takes place at time tk. In the classical Walrasian framework (see Chapter 1),
the transaction or clearing price p∗k is then set to the value that matches supply and
demand, such that (see Equation (1.5)):

D(p∗k, tk) =S (p∗k, tk). (18.1)

This price is unique provided that the curves are strictly monotonic. The left panel
of Figure 18.1 shows some example of supply and demand curves and the resulting
transaction price p∗.

At time tk, market clearing occurs and instantly removes all matched orders.
Assuming that all the supply and demand intentions near the transaction price
were matched during the auction, the state of the MSD curves immediately after
the auction is simple to describe (see Figures 18.1 and 18.5):

ρ−(p, t ↓ tk) =

{
ρ−(p, tk), for p > p∗k,

0, for p ≤ p∗k;

ρ+(p, t ↓ tk) =

{
ρ+(p, tk), for p < p∗k,

0, for p ≥ p∗k.
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In other words, the two MSD curves are càglàd (see Chapter 3): they jump
immediately after the auction.

In the next section, we seek to set up a plausible framework for the dynamics
of the supply and demand curves after the auction has been settled, until the
next auction at time tk+1. This will allow us to describe, among other things,
how the supply and demand curves evolve from the truncated shape given by
Equation (18.2) just after time tk until tk+1. This framework will rely on only two
relevant parameters (the price volatility and the volume traded per unit time), and
in certain limits will give rise to a universal evolution of the MSD curves.

18.2.2 Evolution of Intentions

We now introduce some assumptions about how agents behave. The framework
that we present assumes that market participants only have partial knowledge of the
fundamental price process pF(t), which they try to estimate in their own way, with
some idiosyncratic error around pF(t). More precisely, we assume that between
two auctions, the MSD curves evolve according to three distinct mechanisms:

(i) New intentions: New intentions to buy/sell, not present in the MSD before
time t, can appear. The probability for new buy/sell intentions to appear
between times t and t + dt and between prices p and p + dp is given by
λ±(p− pF)dpdt, where λ±(x) are two arbitrary positive functions of the relative
price x := p− pF. This is close in spirit to the Santa Fe model, although the
incoming flow is now centred around the current fundamental price pF(t),
rather than the current mid-price.

(ii) Cancellations: Existing intentions to buy/sell at price p can be cancelled and
disappear from the supply and demand curves. The probability for an existing
buy/sell intention at price p to disappear between t and t + dt is given by
ν±(p− pF)dt.

(iii) Price revisions: Existing intentions to buy/sell at price p can be revised (e.g.
due to new information or idiosyncratic factors). Between times t and t + dt,
each agent i revises his/her reservation price pi

t as

pi
t −→ pi

t + βi
t︸︷︷︸

sensitivity

× dξ︸︷︷︸
public news

+ dWi.︸︷︷︸
idiosyncratic noise

(18.2)

The term dξt is a noise term that is common to all i, representing some public
fundamental information on the price, such that dpF = dξ. The coefficient βi

t

is the sensitivity of agent i to the particular piece of news. Some agents may
over-react (βi

t > 1), others may under-react (βi
t < 1), or even anti-react (βi

t < 0).
The term dWi models all other idiosyncratic noise contributions (i.e. all other
reasons for which an agent might change his/her valuation).
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It is convenient to assume that the news term dξ is a Wiener noise with variance
σ2dt, and that the idiosyncratic terms dWi are Wiener noises, independent across
different agents, with mean zero and variance Σ2dt.

In the model, the variation of βi
t across agents and the noise contribution dWi

both reflect the heterogeneity of agents’ beliefs. To simplify our calculations,
we will assume that the idiosyncratic terms dWi average out in the limit of many
agents, in the sense that no single participant accounts for a non-zero fraction of
the total supply or demand. While not strictly necessary, this assumption leads to
a deterministic aggregate behaviour for the supply and demand curves and allows
us to sidestep some difficult mathematics.

We pause to make two remarks about the dynamical rules detailed above. First,
this model shares several similarities with the Sante Fe model for the LOB, which
we discussed in Chapter 8. In the Santa Fe model, orders appear and are cancelled
with Poisson rates, much as postulated above for the latent supply and demand
curves. However, the price revision process, with the common news driver dξ, is
absent from the Santa Fe model. In other words, while the Santa Fe model fully
explains the dynamics of the price in terms of order flow, the present specification
allows us to include some exogenous factors as well. The present model also
permits agents to continuously change their view about the future price without
leaving the market, whereas the Santa Fe model only allows existing orders to be
cancelled outright. This will turn out to be a crucial ingredient for explaining the
empirical shape of price impact.

Second, one can regard the dynamical equations of the present framework not as a set
of rules imposed in the formulation of the model, but rather as the consequences of
actions undertaken by utility-optimising, heterogeneous agents. Suppose each agent
i has a certain utility Ui(p,ϕ| p̂i

t,Ft) for buying or selling a unit quantity at price
p, given his/her estimate of the fundamental price p̂i

t and all the other information
available at time t, as encoded in Ft. At each time t, each agent computes his/her
optimal action (pi

t,ϕ
i
t) from the choices of buying (ϕ = +1), selling (ϕ = −1) or

remaining inactive (ϕ = 0), as the result of the following optimisation program:

(pi
t,ϕ

i
t) = argmax

p,ϕ
Ui(p,ϕ|p̂i(t),Ft). (18.3)

Because of the random evolution of the outside world, which is summarised by
( p̂i(t),Ft), the values of ϕi

t ∈ {−1,0,+1} and pi
t can change between t and t+dt, leading

to the above rules. In this way, the agent’s reserve price evolves as the solution of
Equation (18.3) changes. Writing pi

t = fi(p̂i(t), t), where fi is a regular function ifUi

is sufficiently regular, and applying Itô’s lemma we arrive at

dpi =
∂ fi

∂t
dt+

∂ fi

∂p
dp̂i +

σ2
i

2
∂2 fi

∂p2
dt,

= αi
tdp̂i + γi

tdt,

i.e. the stochastic evolution of the world is naturally reflected in the stochastic
evolution of the agent’s reserve price. The drift term γi

t will have little influence
in the following, so we will neglect it henceforth. To recover the specification above,
we further decompose the price revision dpi = αi

tdp̂i into a common component βi
tdξ,

corresponding to public information, and an idiosyncratic component dWi, as above.
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18.2.3 The Free Evolution of the MSD Curves

Endowed with the above hypotheses, one can obtain stochastic partial differential
equations for the evolution of the marginal supply (ρ−(p, t) := ∂pS (p, t)) and
the marginal demand (ρ+(p, t) := −∂pD(p, t)) in the absence of transactions (i.e.
between two auctions). We will supplement these equations by market clearing
conditions when an auction takes place.

The full derivation of these equations is beyond the scope of this book.1

However, their final form is quite intuitive and easy to interpret. It turns out that
these equations take a simple form in the moving frame of the reference price pF.
Introducing the relative price x = p− pF,

∂tρ
+(x, t) = D∂2

xxρ
+(x, t)− ν+(x)ρ+(x, t)+λ+(x);

∂tρ
−(x, t) = D∂2

xxρ
−(x, t)︸���������︷︷���������︸

revisions

−ν−(x)ρ−(x, t)︸���������︷︷���������︸
cancellations

+ λ−(x).︸︷︷︸
new orders

(18.4)

The diffusion coefficient is given by

D =
1
2

(
Σ2 +σ2V[βi

t]
)
.

Part of the diffusion (Σ2) comes from the purely idiosyncratic, noisy updates of
agents; another part (σ2V[βi

t]) comes from the inhomogeneity of their reaction to
news and indeed vanishes if all the βi

t are equal to 1. One could argue that extra
drift terms should be added to these equations, describing the agents’ propensity
to revise their price estimates towards the reference price (x = 0). However, these
drift terms play a relatively minor role for the following discussion, so we do not
consider them further.

The expressions in Equation (18.4) describe the structural evolution of supply
and demand around the reference price pF, which in fact does not appear explicitly
in these equations. Interestingly, the dynamics of the MSD curves can be treated
independently of the dynamics of the reference price, provided that the MSD are
expressed in a moving frame centred around pF.

The linear Equations (18.4) for ρ+(x, t) and ρ−(x, t) can be formally solved in the
general case, by starting from an arbitrary initial condition such as Equation (18.2).
However, this general solution is not very illuminating, so we instead focus on the
special case where the cancellation rate ν±(x) ≡ ν depends neither on x nor on the
side of the latent LOB. The evolution of the MSD curves can then be written in a

1 For a full derivation, see Donier, J., Bonart, J., Mastromatteo, I., & Bouchaud, J. P. (2015). A fully consistent,
minimal model for non-linear market impact. Quantitative Finance, 15(7), 1109–1121. See also Lasry, J. M.,
& Lions, P. L. (2007). Mean field games. Japanese Journal of Mathematics, 2(1), 229–260; and Lachapelle,
A., Lasry, J. M., Lehalle, C. A., & Lions, P. L. (2016). Efficiency of the price formation process in presence
of high-frequency participants: A mean field game analysis. Mathematics and Financial Economics, 10(3),
223–262, for related ideas in the context of mean-field games.
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transparent way, as

ρ±(x, t) =
∫ +∞

−∞
dx′√
4πDt

ρ±(x′, t = 0+)e−
(x′−x)2

4Dt −νt

+

∫ t

0
dt′

∫ +∞

−∞
dx′√

4πD(t− t′)
λ±(x′)e−

(x′−x)2

4D(t−t′)−ν(t−t′),

(18.5)

where ρ±(x, t = 0+) is the initial condition from just after the kth auction, for which
we choose tk = 0 for simplicity. The first term describes the free evolution of this
initial condition, whereas the second term describes new intentions that appear and
evolve between times 0 and t.

We now explore the properties of the above solution at time t = tk+1 :=
tk + τ (i.e. just before the next auction), in the two asymptotic limits: τ → ∞,
which corresponds to very infrequent auctions, and τ→ 0, which corresponds to
continuous-time auctions (as used in most modern financial markets).

18.3 Infrequent Auctions

The aim of this section is to show that in the limit of very infrequent auctions (such
as Walrasian auctions), the shape of the marginal supply and demand curves can be
computed explicitly. This allows one to characterise Kyle’s lambda (i.e. the impact
parameter; see Chapter 15) in this framework.

In Equation (18.5), if we let t = τ → ∞, then the first term disappears
exponentially fast, with rate ν. This means that the system reaches a stationary
state ρ±st.(x), independent of the initial conditions. In this case, the integral over t′

in second term in Equation (18.5) can be computed explicitly, to give the following
general solution:

ρ±st.(x) =
1

2
√
νD

∫ +∞

−∞
dx′λ±(x′)e−

√
ν
D |x′−x|. (18.6)

A particularly simple case occurs when λ±(x) = Ω±e∓x/Δ. This case corresponds
to the situation in which the probability that buyers (respectively, sellers) are
interested in a transaction decays exponentially with increasing (respectively,
decreasing) relative price. The parameter Δ can be regarded as the price interval
over which buy and sell intentions coexist.

In this toy example, a stationary state only exists when the cancellation rate is
strong enough to prevent the accumulation of orders far away from y = 0. When
νΔ2 > D:

ρ±st.(x) =
Ω±Δ2

νΔ2 −D
e∓x/Δ.

The right panel of Figure 18.1 shows the generic shape of ρst.(x), with an
overlapping region where buy and sell orders coexist. The auction price p∗ :=
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pF + x∗ is determined by Equation (18.1):

V∗ :=
∫ ∞

x∗
dyρ+st.(x) =

∫ x∗

−∞
dyρ−st.(x),

where V∗ is, by definition, the volume exchanged during the auction. This equality
is the analogue of Equation (1.6) in the present context.

For the exponential case, this equation can be solved as:

x∗ =
Δ

2
ln

(
Ω+

Ω−

)
. (18.7)

This solution has a clear interpretation: if the new buy-order intentions that have
accumulated since the last auction outsize the new sell-order intentions during the
same period, then the auction price will exceed the reference price, and vice-versa.
In this case, one expects the imbalance to revert in the next period (by definition
of the reference price), leading to short-time mean-reversion around pF. If Ω+ ≈
Ω− :≈Ω0, then

x∗ ≈ Ω+ −Ω−
2Ω0

Δ,

and

V∗ =
Ω0Δ

3

νΔ2 −D
.

After the auction, the MSD curves start again from ρst.∓ (x), truncated below
(respectively, above) x∗, as in Equation (18.2).

We now turn to price impact in this model, by imagining that a buy metaorder of
volume Q and with a very high reserve price is introduced in an otherwise balanced
market (i.e.Ω+ =Ω−). For sufficiently small Q, the market clearing price pQ can be
computed by writing S (pQ) =D(pQ)+Q and Taylor-expanding S (p) and D(p)
around pF to first order in Q. One readily gets a linear impact law:

S (pQ) =D(pQ)+Q,

S (pF)+ (pQ − pF)∂pS (pF) =D(pF)+ (pQ − pF)∂pD(pF)+Q+O(Q2),

⇒ I(Q) := pQ − pF = ΛQ+O(Q2), (18.8)

where we have used that S (pF) =D(pF). Kyle’s lambda, defined as the slope of
the linear impact law, is given by the relationship

Λ−1 = ∂pS (pF)− ∂pD(pF) = ρ+st.(0)+ ρ−st.(0). (18.9)

Whenever the ρ+st.(x) and ρ−st.(x) do not simultaneously vanish at x = 0, the price
response to a perturbation must be linear, as in the Kyle model (see Chapter 15).
For the exponential case, one finds

Λ =
Δ

2V∗
.
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This has an immediate interpretation: the price impact of a metaorder of volume
Q is proportional to the typical disagreement range Δ times the ratio of Q over the
typical transacted volume at each auction V∗. Note that for the exponential model,
the impact law can be computed beyond the linear regime, and reads

I(Q) = Δsinh−1
( Q
2V∗

)
, (18.10)

which is linear for small Q and logarithmic at large Q.
The main take-home message is that when the inter-auction time is sufficiently

long, each auction clears an equilibrium supply with an equilibrium demand,
both given by the long-time solution of Equation (18.6). This corresponds to the
standard representation of market dynamics in the Walrasian context, since in this
case only the long-term properties of supply and demand matter, and the transient
behaviour is discarded. In the next section, we will depart from this limiting case
by introducing a finite inter-auction time, such that the transient dynamics of
supply and demand become a central feature.

18.4 Frequent Auctions

We now turn to the other limit, where the inter-auction time τ = tk+1 − tk tends to
zero. Since all the supply curve left of (respectively, demand curve right of) the
auction price is wiped out by the auction process, one intuitively expects that after
a very small time τ, the density of buy/sell orders in the immediate vicinity of the
transaction price will always be small. This is indeed the case, and one can specify
exactly the shape of the stationary MSD after many auctions have taken place, as
follows.

Consider again Equation (18.5) just before the (k + 1)th auction at time tk+1, in the
case where the flow of new orders is symmetric (i.e. λ+(x) = λ−(−x)), such that the
transaction price is always at the equilibrium price (x∗ = 0). Focusing on the supply
side, one can postulate that when τ→ 0, then in the vicinity of x= 0, the term ρ−(x, t=
kτ) can be written as

ρ−(x, t = kτ) =
√
τφk

(
y√
Dτ

)
+O(τ) (18.11)

(and symmetrically for the demand side). Now, consider Equation (18.5), with the
change of variables

x→ √Dτu,

x′ → √Dτv,

t′ → τ(1− z).

This leads to:

ρ−(u
√

Dτ, (k+ 1)τ) =
∫ +∞

−∞

dv√
4π
ρ−(
√

Dτv, t ↓ kτ)e−
(v−u)2

4 −ντ+

+ τ

∫ 1

0
dz

∫ +∞

−∞

dv√
4πz

λ(v
√

Dτ)e−
(u−v)2

4z −νzτ.

(18.12)
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Just after the auction, ρ− is strictly zero for w < 0 (see Equation 18.2), so the first
integral over v indeed only runs from 0 to∞.

Using the ansatz Equation (18.11) and taking the limit τ→ 0 leads to the following
iteration equation, exact up to order

√
τ:

φk+1(u) =
∫ +∞

0

dv√
4π
φk(v)e−(u−v)2/4 +

√
τλ(0)+O(τ).

Note that ν has disappeared from the equation (but will appear in the boundary
condition; see below), and only the value of λ close to the transaction price is relevant
at this order.

After a very large number of auctions, one therefore finds that the stationary
shape of the demand curve close to the price and in the limit τ→ 0 is given by the
non-trivial solution of the following fixed-point equation:

φ∞(u) =
∫ +∞

0

dw√
4π
φ∞(w)e−(u−w)2/4, (18.13)

supplemented by the boundary condition φ∞(u) ≈ L√Du for u 	 1, where L
can be fully determined by matching with the explicit solution for τ = 0 (see
Equation (19.4) in the next chapter). The final expression reads

L = 1
D

∫ ∞

0
dx′

[
λ(−x′)−λ(x′)

]
e−
√
ν/D x′ .

In the exponential toy model, it follows that

L = 2Ω0Δ

Δν−D
, (18.14)

which is a measure of liquidity (see Equation (18.17) below) that increases with
the flux of incoming intentions Ω0 and decreases with the cancellation rate ν. Note
that L has dimensions of 1/[price]2.

Equation (18.13) is of the so-called Wiener–Hopf type, and its analytical
solution can be found in the literature.2 We plot this solution numerically in
Figure 18.3. As the figure illustrates, the solution is very close to an affine function
for u > 0. Hence, for τ→ 0

ρ−st.(x ≥ 0) ≈L(x+ x0); ρ+st.(x ≤ 0) ≈L(−x+ x0); x0 ≈ 0.824
√

Dτ, (18.15)

as illustrated in Figure 18.2. Note in particular that for x = 0:

ρ−st.(x = 0) = ρ+st.(x = 0) ≈ 0.824L√Dτ; (τ→ 0). (18.16)

2 See: Atkinson, C. (1974). A Wiener-Hopf integral equation arising in some inference and queueing problems.
Biometrika, 61, 277–283.
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Together with Equation (18.9), this leads to

Λ−1 ≈ 1.65L√Dτ. (18.17)

In summary, in the limit of frequent auctions (τ→ 0), the stationary shape ρst.(x)
of the MSD curves close to the transaction price x=O(

√
Dτ) is universal for a wide

class of model specifications (i.e. the functions ν±(x) and λ±(x)). This MSD curve
is given by

√
τφ∞(x/

√
Dτ), where φ∞ can itself be approximated by a simple affine

function.
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We now turn to the interpretation of this result in terms of market liquidity and
price impact. In the τ→ 0 limit, one can show that the volume V∗ cleared at each
auction is given by:

V∗(τ) =LDτ. (18.18)

The total transacted volume VT within a finite time interval of length T is given by
VT = V∗(τ)T/τ. When τ→ 0, this volume remains finite, and is given by

VT =LDT.

This observation should be put in perspective with the recent evolution of financial
markets, where the time between transactions τ has become very small and the
volume of each transaction has decreased, in such a way that the daily volume has
remained roughly constant.3

Looking back at Equation (18.17), we note that Kyle’s lambda diverges as Λ ∝
1/
√
τ when τ→ 0. This is the pivotal result of the present section. It means that

as the auction frequency increases, the marginal supply and demand becomes very
small around the transaction price (see Figure 18.4). Intuitively, this is due to the
fact that close to the transaction price, liquidity has no time to rebuild between
two auctions. From the point of view of price impact, the divergence of Kyle’s
lambda as 1/

√
τ means that the auction price becomes more and more susceptible

to any imbalance between supply and demand. In other words, the market becomes
fragile in the high-frequency limit.

18.5 From Linear to Square-Root Impact

When the inter-auction time τ tends to 0, one can compute the supply and demand
curves just before an auction from the shape of the MSD curves close to the
transaction price, given by Equation (18.15). Using the results of the previous
section, one then can work out the corresponding impact I(Q)= pQ− pF for τ→ 0,
with the tantalising result:

I(Q) =
√

Dτ×Y
( Q
V∗

)
; V∗ =LDτ, (18.19)

where Y(u) is a function with the asymptotic behaviour:

Y(u) ≈u�1 0.555u;

Y(u) ≈u	1

√
2u.

3 Between 1995 and 2015, the total daily transacted volume (as a fraction of the market capitalisation) on the US
stock market has roughly doubled, when the daily number of transactions has been multiplied by a factor 10 to
100 depending on stocks.
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The fact that Y(1) is a number of order 1 means that trading the typical auction
volume typically moves the price by

√
Dτ (i.e. its own volatility on time τ).

By Equation (18.19), the impact I(Q) is linear in a region where the volume Q
is much smaller than V∗ ∼ LDτ (i.e. when the extra volume Q is small compared
to the typical volume exchanged during auctions). In the other limit (Q 	 V∗),
however, one recovers the square-root impact law:

I(Q	 V∗) ≈
√

2Q
L . (18.20)

Note that Equation (18.20) can be rewritten exactly as the empirical result
(Equation (12.6)). Using the relation VT =LDT and σT =

√
DT , one indeed finds

√
2Q
L =

√
2σT

√
Q
VT
.

If Q is small enough for the linear approximation of the MSD to hold (see
Equation (18.15)), then the impact is universally given by Equation (18.19). For
very large Q, however, this linear approximation breaks down and one instead
enters a different, presumably non-universal regime that is beyond the scope of
the present discussion (see Section 12.3.3). As Figure 18.4 illustrates, impact is
Kyle-like for Q < V∗, and crosses over to a square-root regime when Q becomes
greater than V∗. For τ→ 0, as in the case of continuous-time double auctions, the
volume per auction V∗ = LDτ also tends to zero, so that the region where impact
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Figure 18.4. The impact of a traded volume Q for a given inter-auction time τ.
The impact is linear for Q � V∗ = LDτ and square-root for Q 	 V∗ = LDτ.
The linear impact zone shrinks to zero when τ→ 0, where one recovers a pure
square-root impact (i.e. a diverging Kyle’s Λ).
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Figure 18.5. (Top row) Supply and demand curves in (left) Walrasian auctions,
(centre) immediately after infrequent auctions and (right) immediately after
frequent auctions. (Bottom row) Corresponding MSD curves. When transactions
occur, supply and demand cannot cross (centre and right). When the market is
cleared frequently, marginal supply and demand curves are depleted close to the
price and exhibit a characteristic V-shape (right).

is linear shrinks to zero. In other words, when the market clearing time becomes
infinitely small, the impact of small trades is never linear.4

18.6 Conclusion

The big-picture message of this chapter is quite simple, and is well summarised by
the graphs in Figure 18.5. In this figure, we show:

• the standard Walrasian supply and demand curves just before the auction (from
which the clearing price p∗ can be deduced);

• the stationary supply and demand curves just after an auction, when the
inter-auction time τ is large enough (in which case, the marginal supply and
demand are both finite at p∗);

• the supply and demand curves in the continuous-time limit τ→ 0, for which the
marginal supply and demand curves vanish linearly around the current price.

Interestingly, it is possible to check the above prediction on the shape of the
MSD curves using Bitcoin data. Due to its relatively recent invention, the Bitcoin

4 However, in practice, many discretisation effects (minimum lot size, tick size, etc.), as well as high-frequency
liquidity, can restore the linear regime when Q→ 0. See also the discussion in Benzaquen, M. & Bouchaud,
J.P. (2017). Impact with multi-timescale liquidity, arXiv:1710.03734.
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Figure 18.6. (Top panel) The mean relative volume profile of a Bitcoin LOB,
which we argue provides a representative sample of the MSD curves, at least
close to the mid-price. The data comes from successive snapshots of a full LOB
in the Bitcoin market, taken every 15 minutes from May 2013 to September
2013, centred around the current mid-price. (Bottom panel) Integrated shape
of the visible LOB. The LOB/MSD curves grow linearly with increasing
distance from the mid-price, resulting in a quadratic shape for supply and
demand.

market is much less mature than equities or futures markets. Therefore, the activity
generated by market participants in this market is typically less strategic and less
sophisticated than that of traditional financial markets (this was certainly the case
in 2013, which is the period described by our data). One example of such activity
is that many Bitcoin traders display their orders in the visible LOB, even far from
the mid-price. Therefore, a much larger fraction of the total liquidity is visible (and
a much smaller fraction is undisclosed) than is the case in other markets.

Figure 18.6 shows the mean relative volume profile for a Bitcoin LOB, which we
argue is a good proxy for the MSD curves, at least not too far from the mid-price.
From the Bitcoin data, one can see that the MSD curves are indeed linear in
the vicinity of the mid-price. This behaviour persists over a price range of about
5%, in agreement with the dynamical theory of supply and demand in the limit
of frequent auctions. Correspondingly, one expects that the impact of metaorders
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should be well described by a square-root law in this region. This is indeed also
found empirically.5

In this chapter, we have reviewed how simple ideas regarding the time-dependent
preferences of agents can be implemented in terms of a partial differential
equation, Equation (18.4), governing the evolution of latent liquidity. This
equation describes the dynamics of liquidity between auctions, whose role is to
clear the market by matching buy and sell orders that overlap at the end of each
period of free evolution of the supply and demand curves. Note that the modelling
strategy here does not rely on any equilibrium or fair-pricing conditions, but rather
relies on purely statistical considerations.

When auctions are allowed to happen at high frequency, the liquidity vanishes
linearly around the price, which in turn leads to an anomalous, square-root
impact of small orders that increases with market volatility. This result highlights
an apparent paradox: the more frequently transactions occur (thereby theoret-
ically increasing market efficiency), the more fragile the resulting price is! In
continuous-time double-auction markets, the price can be seen as the point at
which a vanishing supply meets a vanishing demand.

In the next chapter, we will focus on the dynamics of impact in this continuous
limit. In particular, we will consider the impact of a metaorder executed using an
arbitrary trading schedule, and we will see that directly describing the evolution
of agents’ intentions offers a much deeper level of understanding than does
postulating ad-hoc stochastic models for prices.

Take-Home Messages

(i) In modern financial markets, most liquidity remains latent because
agents try to avoid revealing their true intentions, for fear of adverse
impact. Therefore, there is more to model than visible liquidity.

(ii) In a market with many small, heterogeneous, stochastic agents, the
dynamics of latent liquidity can be modelled using forward PDEs.
This framework is mostly relevant for zero-intelligence agents, but
can also account for some models with heterogeneous, optimising
agents.

(iii) The dynamics of liquidity can in this case be decomposed according
to two distinct mechanisms: the free evolution of liquidity (trading
intentions) and the clearing mechanism. Whereas the second depends
on the particular choice of market organisation (e.g. auctions or
continuous-time LOB trading), the first is in principle general.

5 See: Donier, J., & Bonart, J. (2015). A million metaorder analysis of market impact on the Bitcoin. Market
Microstructure and Liquidity, 1(02), 1550008.
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(vi) In a set-up where agents can submit, cancel and revise their orders,
the free evolution of liquidity can be described by a diffusion-type
equation.

(v) The more frequent the auctions in a market, the less liquidity in
the vicinity of the price, and thus the higher the impact of an
arriving market order. In the limit of a continuous-time double-auction
mechanism, liquidity near the price decays linearly, which results in
square-root impact.

18.7 Further Reading

The material of this chapter is heavily based on the following publications:
Donier, J., Bonart, J., Mastromatteo, I., & Bouchaud, J. P. (2015). A fully

consistent, minimal model for non-linear market impact. Quantitative Finance,
15(7), 1109–1121.

Donier, J., & Bonart, J. (2015). A million metaorder analysis of market impact on
the Bitcoin. Market Microstructure and Liquidity, 1(02), 1550008.

Donier, J., & Bouchaud, J. P. (2016). From Walras’ auctioneer to continuous time
double auctions: A general dynamic theory of supply and demand. Journal of
Statistical Mechanics: Theory and Experiment, 2016(12), 123406.

For related ideas, see:
Lasry, J. M., & Lions, P. L. (2007). Mean field games. Japanese Journal of

Mathematics, 2(1), 229–260.
Gao, X., Dai, J. G., Dieker, T., & Deng, S. (2016). Hydrodynamic limit of order book

dynamics. Probability in the Engineering and Informational Sciences, 1–30.
Lachapelle, A., Lasry, J. M., Lehalle, C. A., & Lions, P. L. (2016). Efficiency of the
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Impact Dynamics in a Continuous-Time
Double Auction

Details that could throw doubt on your interpretation must be given, if you know
them. You must do the best you can – if you know anything at all wrong, or possibly
wrong – to explain it. If you make a theory, for example, and advertise it, or put it
out, then you must also put down all the facts that disagree with it, as well as those
that agree with it.

(Richard P. Feynman)

In the previous chapter, we discussed a simple, theoretical framework that seeks
to describe the evolution of latent liquidity between two auctions. In this chapter,
we dive more deeply into the dynamics of prices under the pressures created by
market participants seeking to trade. To achieve this, we consider from the outset
the limiting case τ→ 0, which corresponds to the continuous-time double-auction
setting of modern financial markets, in which transactions occur whenever market
orders meet outstanding limit orders. Within this framework, we amend the
dynamical model encapsulated in Equation (18.4), which allows us to study the
impact of a metaorder executed with an arbitrary trading schedule over a specific
time interval T .

19.1 A Reaction-Diffusion Model

The trick that we will employ is to add to Equation (18.4) a term that mimics
auctions in a continuous setting, by removing orders as soon as they can be
matched. As an analogy with chemical reactions, when a buy order (B) meets a
sell order (S ) of the same size at the same price, they react and are removed from
the supply and demand curves, such that B+S →∅. The corresponding dynamical
equations then read

∂tρ
+(x, t) = D∂2

xxρ
+(x, t)− ν+(x)ρ+(x, t)+λ+(x)−R(x, t),

∂tρ
−(x, t) = D∂2

xxρ
−(x, t)︸���������︷︷���������︸

revisions

−ν−(x)ρ−(x, t)︸���������︷︷���������︸
cancellations

+ λ−(x)︸︷︷︸
new orders

−R(x, t)︸︷︷︸
clearing

, (19.1)

354
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where D∂2
xxρ is the diffusion term and R(x, t) is the reaction term that removes

any buy and sell orders that meet at a given relative price x = p − pF(t) from
the corresponding densities ρ±(x, t).1 Crucially, the same term R(x, t) appears in
both equations, to reflect the fact that the disappearance of any buy volume is
accompanied by the disappearance of the same sell volume.

Instantaneous market clearing corresponds to continuous-time auctions, such
that the supports of ρ+(x, t) and ρ−(x, t) are mutually exclusive at all times: buy
orders live on (−∞, x∗(t)) while sell orders live on (x∗(t),+∞), where x∗(t) is the
relative clearing price p∗ − pF. This is the case that we will consider henceforth.

Although it may look innocuous, the R(x, t) term makes these equations highly
non-trivial. However, we can sidestep this difficulty by introducing an auxiliary
field

χ(x, t) := ρ+(x, t)− ρ−(x, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρ+(x, t), for x < x∗(t);
ρ−(x, t), for x > x∗(t);
0, for x = x∗(t).

Recall that only buy orders are present for x < x∗(t), and that only sell orders are
present for x > x∗(t), so χ(x, t) in fact captures all information about buy and sell
orders (see Figure 3.1). The equation

χ(x∗, t) = 0

can be regarded as the definition of the (relative) clearing price x∗.
For simplicity, we henceforth assume that the cancellation rates ν±(x) are

constant (i.e. independent of x). By taking the difference of the two equations
in (19.1), one finds that the dynamical evolution of χ(x, t) is linear and does not
depend at all on the reaction term R(x, t):

∂tχ(x, t) = D∂2
xxχ(x, t)− νχ(x, t)+λ+(x)−λ−(x). (19.2)

By noting the parallel to Equation (18.6), we arrive at the stationary solution

χst.(x) =
1

2
√
νD

∫ +∞

−∞
dx′

[
λ+(x′)−λ−(x′)

]
e−
√

ν
D |x′−x|. (19.3)

In a balanced market, buy/sell intentions are symmetric about the reference price
pF, so we can describe them both with a single function

λ(x) := λ+(x) = λ−(−x).

By inspection of the integral in Equation (19.3), this leads to χst.(0)= 0, so that (by
construction) the long-term clearing price in the absence of a perturbing metaorder
is x∗ = 0.
1 We recall that pF(t) is the time-dependent reference price, around which the order flow is organised (see

Section 18.2.2).
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In the balanced case, χst.(x) is an odd function of x and goes to zero at the origin
with a finite slope, given by:

dχst.(x)
dx

∣∣∣∣∣
x=0
=

1
D

∫ +∞

0
dx′

[
λ(x′)−λ(−x′)

]
e−
√

ν
D x′ = −L, (19.4)

whereL is the liquidity parameter introduced in Chapter 18. Therefore, we recover
the V-shaped liquidity curves discussed in Figure 18.2 (see Section 18.4).2

This result shows (as is well known) that a diffusion equation has a locally linear
stationary distribution close to an absorbing boundary at x = 0. The local gradient
L is related to the current J (i.e. the total volume of transactions per unit time) via
the equality

DL = J := lim
τ→0

V∗(τ)
τ

,

where V∗(τ) is the volume exchanged during each time interval τ (see
Equation (18.18)).

The width w of the linear region (beyond which the detailed shape of λ(x)
influences the equilibrium profile) is of the order

w ∼
√

D
ν
.

It is reasonable to expect that the latent liquidity has a memory time ν−1,
whose order of magnitude is several hours to several days – remember that
we are speaking here of slow actors, not of market-makers contributing to the
high-frequency dynamics of the revealed LOB. Taking D to be of the order of the
price volatility (i.e. typically a few percent per day), one finds that w is itself a few
percent of the price.

In the remaining sections of this chapter, we consider price changes that are
small compared to w (i.e. price changes of less than a few percent). To perform
our calculations, we make use of the locally linear shape of the MSD curves (see
Section 18.2) which is only valid when price changes are of less than a few percent.
For larger price changes, the following considerations would need to be amended,
with the addition of other modelling ingredients.

19.2 A Metaorder in an Equilibrated Market

We now extend the above framework by introducing a metaorder arrival and
calculating its impact on the price. We model this metaorder as an extra current
of buy or sell orders in an otherwise equilibrated market. We assume that the total
size Q of the arriving metaorder is small enough not to influence the behaviour

2 We in fact already obtained this result via a different approach in Section 8.7.
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of the rest of the market (i.e. that its arrival does not modify the values of D, ν or
λ).3 We also assume that each of the metaorder’s child orders arrive at exactly
the transaction price p∗(t) at their time of arrival, and are therefore executed
immediately as market orders.

Consider a metaorder that arrives at some random time t, with no conditioning
on the particular state of the MSD. For mathematical convenience, we set t = 0.
Let T denote the lifetime of the metaorder. For 0 ≤ t ≤ T , let j(t) denote the signed
trading flux due to the metaorder at time t, with j(t) > 0 for a buy metaorder and
j(t) < 0 for a sell metaorder (and j(t) = 0 for t < 0 and t > T ).4 For example,
a buy metaorder of size Q with constant execution rate is such that j(t) = Q/T .
Introducing x∗(t) := p∗(t)− pF, Equation (19.2) becomes

∂tχ(x, t) = D∂2
xxχ(x, t)+ j(t)δ(x− x∗(t))︸������������︷︷������������︸

metaorder arrival

−νχ(x, t)+λ(x)−λ(−x). (19.5)

Because we assume that the metaorder arrives in a stationary state with no
conditioning on the state of the MSD curves, it holds that at t = 0, the MSD
can be described by χst.(x) ≈ −Lx for sufficiently small x. Hence, remarkably,
liquidity on average decreases linearly close to the current price; this is at the heart
of the anomalous square-root impact law. For t > 0, but small enough that both
new cancellations and new depositions remain negligible, only the first two terms
in Equation (19.5) need to be considered, and the evolution of χ(x, t) simplifies to:5

∂tχ(x, t) ≈ D∂2
xxχ(x, t)+ j(t)δ(x− x∗(t)).

This is the standard heat equation with a source term localised at x = x∗(t).
Applying the heat kernel to the source term readily gives the MSD profile in the
presence of the metaorder:

χ(x, t) = χst.(x)+
∫ t

0

du j(u)√
4πD(t− u)

exp

[
− (x− x∗(u))2

4D(t− u)

]
, (19.6)

where x∗(u) is the relative transaction price at time u and χst.(x) = −Lx. Using that
χ(x∗(t), t) ≡ 0 provides a self-consistent integral equation for the price at time
t > 0:

Lx∗(t) =
∫ t

0

du j(u)√
4πD(t− u)

exp

[
− (x∗(t)− x∗(u))2

4D(t− u)

]
. (19.7)

Equation (19.7) is the central equation of this chapter. It is formally justified in the
limit ν,λ→ 0, holding L fixed. As we noted above, taking the limit ν,λ→ 0 allows

3 Large metaorders might lead to a sudden increase of the cancellation rate ν and a corresponding drop of the
liquidity L, which may in turn result in a flash crash; see Chapter 22.

4 In fact, the present formalism can accommodate more complex trading profiles, such that j(t) changes sign (see
Section 19.4).

5 In this limit, the precise price around which the deposition takes place is irrelevant. In Equation (19.5), we have
assumed that x = 0 remains the reference price for deposition for all t, but we could have chosen instead the
transaction price as the reference price, as in the Santa Fe model specification (i.e. λ(x)→ λ(x− x∗(t))).
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one to discard the corresponding terms in Equation (19.5). The modifications
brought in by a finite value of ν will be discussed at the end of the next section.

Provided impact is small, in the sense that |x∗(u) − x∗(t)| � √D(t− u) for all
t and u, the exponential term in Equation (19.7) is approximately equal to 1.
Equation (19.7) then boils down to the continuous-time linear propagator model of
Chapter 13, with a square-root impact decay (i.e. the decay exponent is β = 1/2):

x∗(t) =
1
L

∫ t

0

du j(u)√
4πD(t− u)

. (19.8)

One can show that this linear approximation is valid for sufficiently small trading
rates j(u), but breaks down for more aggressive execution (for which a more
precise analysis is needed, as we explore in the next section). Equation (19.7)
can therefore be regarded as a non-linear generalisation of the propagator model
from Chapter 13, based on a realistic description of the stochastic dynamics of the
underlying supply and demand curves. The existence of a sound micro-foundation
ensures that many desirable properties hold at the mesoscopic scale (such as the
absence of arbitrage, as we discuss in Section 19.5).

19.3 Square-Root Impact of Metaorders

In this section, we will show how the square-root impact law is recovered within
the present formalism. The simplest case in which a fully non-linear analysis is
possible is that of a metaorder executed at a constant rate j0(t)=Q/T for t ∈ [0,T ].
In this case, one can check by substitution that x∗(u) = A

√
Du is an exact solution

of Equation (19.7), where A( j0) is the solution of the equation

A( j0) =
j0
J

∫ 1

0

du√
4π(1− u)

e−
A2(1−√u)
4(1+

√
u) .

One can obtain the asymptotic behaviour of A( j0) in the two limits j0 � J and
j0	 J. In the first case, A ≈ j0/J

√
π; in the second case, A ≈ √

2 j0/J.
Assuming for now that the metaorder is uninformed (in the sense that j(t) is

uncorrelated with the future evolution of the reference price pF), the peak impact
of the metaorder Ipeak(Q) is simply given by the price at the end of the metaorder
x∗(T ). This leads to an exact square-root impact law:

Ipeak(Q) ≈
√

Q
L ×

⎧⎪⎪⎨⎪⎪⎩
√

j0
πJ for j0� J, (i.e. the slow limit);√
2 for j0	 J, (i.e. the fast limit).

(19.9)

Recall from Section 12.3 that the empirical result can be written as

Ipeak(Q) = YσT

√
Q/VT ,
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where σT is the volatility and VT is the traded volume (both on scale T ), and Y is
a constant of order 1. In the present context, σ2

T = DT and VT = JT with J = DL.
Equation (19.9) is thus identical to Equation (12.6) withL=VT/σ

2
T and a prefactor

Y obtained as:

Y ≈
⎧⎪⎪⎨⎪⎪⎩

√
j0
πJ for j0� J, (i.e. the slow limit);√
2 for j0	 J, (i.e. the fast limit).

(19.10)

More generally, Equation (19.7) is amenable to an exact treatment in the large- j(t)
limit, provided j(t) does not change sign and is a sufficiently regular function of
time.6 The leading term yields the average impact trajectory:

x∗(t) ≈
√

2q(t)
L ,

where

q(t) :=
∫ t

0
du j(u)

is the volume executed up to time t. Note that this price impact depends only
on the executed volume q(t), not on the execution schedule. This generalises the
above result for a uniform execution schedule, for which we found impact to be
independent of the trading intensity j0 for large j0. Such a weak dependence on
the execution schedule is indeed in qualitative agreement with empirical results.

How do these results change if ν is not infinitesimal? Calculations show that the
square-root regime only holds for metaorders whose duration T is small compared
to ν−1. For longer metaorders, most intentions are cancelled (i.e. agents change
their mind on the valuation), erasing all the memory of the supply and demand
curves. One can show that in that regime, impact becomes linear in the size of the
metaorder Q, as we would expect on general grounds (see Section 12.3).7

19.4 Impact Decay

An interesting topic that was difficult to address within the discrete-auction
formalism of Chapter 18 is that of impact decay. Specifically, how does the price
behave for times t > T , after the metaorder has been fully executed? In the case of
a uniform execution schedule, the impact decay is given by the solution of

x∗(t) =
D j0

J

∫ T

0

du√
4πD(t− u)

exp

⎡⎢⎢⎢⎢⎣− (x∗(t)−A
√

Du)2

4D(t− u)

⎤⎥⎥⎥⎥⎦ . (19.11)

6 Details can be found in Donier, J., Bonart, J., Mastromatteo, I., & Bouchaud, J. P. (2015). A fully consistent,
minimal model for non-linear market impact. Quantitative Finance, 15(7), 1109–1121.

7 See Benzaquen, M. & Bouchaud, J.P. (2017). Impact with multi-timescale liquidity, arXiv:1710.03734.
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Figure 19.1. Impact I(Q, t) as a function of rescaled time t/T for various
trading rate parameters j0/J. The initial growth of the impact follows exactly
a square-root law, and is followed by a sudden regime shift after the end of the
metaorder. For t ↓ T , the slope of the impact function becomes infinite, and at
large times one observes an inverse-square relaxation proportional to

√
T/t with

a pre-factor that depends on j0/J. Note that the curves for j0/J = 0.1 and j0/J = 1
are nearly indistinguishable.

In the limit of small j0, the term in the exponential is small, and it is appropriate
to use the linear propagator model. In this case, the model predicts the following
normalised impact relaxation:

I(Q, t > T )
Ipeak(Q)

=

√
t− √t−T√

T
. (19.12)

This quantity starts at 1 for t = T (by definition), behaves as 1− √(t−T )/T very
shortly after time T , and behaves as (T/t)1/2 for larger t.

For large j0, the analysis of Equation (19.11) is quite complicated and beyond
the scope of the book. The full analysis reveals that the rescaled initial decay of
impact is in fact exactly given by 1− √(t−T )/T , independently of j0/J. For large
times, the relaxation also behaves as (T/t)1/2, but now with a different prefactor
(see Figure 19.1). It is noteworthy that the time scale over which impact decays,
say by a factor 2, is proportional to T itself (i.e. the time over which the metaorder
was executed). Therefore, the longer an arriving metaorder pushes the market,
the longer it takes to come back. This is another manifestation of the long-range
resilience of markets (see Chapter 13).
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Figure 19.2. Trajectory of the average price before and after a sudden switch of
the sign of a metaorder. Here, j(t) = j0 for t < T and j(t) = − j0 for t > T . The
solid curves show the results for different choices of j0. The dotted curve shows
the theoretical benchmark j0 → 0, which corresponds to the propagator model.
The dash-dotted curve shows the j0 =∞ limit. In the large- j0 regime, non-linear
effects render the propagator model invalid, and considerably increase the impact
of the reversal trade.

The main features of Equation (19.12) are broadly consistent with empirical
studies (see Section 12.4 and Section 19.7): impact is a function of t/T , the initial
slope of decay is infinite and the final decay is slow.

Another interesting case to consider is when trading is completely reverted after
time T , in the sense that j(t) = j0 for t ∈ [0,T ] and j(t)= − j0 for t ∈ [T,2T ]. Within
the linear propagator approximation, the time needed for the price to revert to its
initial value (before continuing to be pushed down by the sell metaorder) is T/4. In
the non-linear regime j0	 J, the price goes down much faster. One can show that
it reaches its initial value after a time of order (J/ j0)T � T/4 (see Figure 19.2).
This is because a fast buy metaorder leaves behind an almost empty demand curve,
which cannot resist efficiently against the subsequent sell trade.

19.5 Absence of Price Manipulation

One consequence of the asymmetry of the directional trajectory (i.e. on the way
up and on the way down) is that the impact of a sell trade after a buy trade is much
larger than that of a buy trade after a buy trade. Such an asymmetry means that
conducting a simple round-trip trade is costly, because the average sell price is
below the average buy price. Hence, one cannot manipulate the price to one’s own
advantage, first pushing it up by buying aggressively, in the hope of selling back at
a higher price.
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In fact, this absence of price manipulation holds in full generality within the
non-linear propagator Equation (19.7). Any viable model of price impact should
indeed be such that mechanical price manipulation (i.e. leading to a positive
profit after a closed trading loop with no information) is impossible. Using an
impact model with profitable closed trading trajectories (e.g. in optimal execution
algorithms) would lead to instabilities. This is one of the many desirable properties
of latent liquidity models. This benefit makes such models superior to effective
models based on prices only, for which ensuring the absence of price manipulation
requires extra constraints – see Section 19.7 for references.

To establish the absence of price manipulation, we start by noting that the average
cost of a closed trajectory is given by

C =

∫ T

0
du j(u)x∗(u), with

∫ T

0
du j(u) = 0,

where x∗(u) given by Equation (19.7). This formula simply means that the executed
quantity j(u)du between time u and u+du has price x∗(u). Without loss of generality,
we can assume that the initial and final positions are both zero, so there is no
additional marked-to-market boundary term.

Using Equation (19.7), it is straightforward to show that C can be expressed as a
quadratic form

C =
1
2

∫ T

0

∫ T

0
dudu′ j(u)M(u,u′) j(u′),

whereM is a non-negative operator. More precisely, introducing

Kz(u,v) := Θ(u− v)e−Dz2(u−v)+izx∗(u),

one can rewrite the matrixM as a “square”, i.e.:

M(u,u′) = D
∫ ∞

−∞
dzz2

∫ +∞

−∞
dv Kz(u,v) K∗z (u′,v).

Therefore, C ≥0 for any execution schedule, so price manipulation is impossible
within the present framework. This generalises a result first obtained for the linear
propagator model (see Section 19.7): any trading incurs positive expected impact
costs. Hence, trading is only justified if some reliable prediction signal is available.
Still, many investors trade without a clear notion of the impact cost they incur.

19.6 Conclusion and Open Problems

In this chapter, we have shown that the model for the dynamics of intentions, as
developed in the previous chapter, naturally leads to a non-linear propagator model
in the limit of continuous-time double-auction markets. This framework allowed
us to compute the average price trajectory in the presence of a metaorder, and
therefore to generalise the results of Section 13.4.4.

The central result of this chapter is Equation (19.7), which reproduces the
observed square-root impact law but also predicts non-trivial trajectories when
trading is interrupted or reversed. We also showed that the framework is free
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of price manipulation, which we argued makes it useful for applications. Again,
describing directly the evolution of agents’ intentions leads to a richer and more
consistent framework than postulating ad-hoc stochastic models for price changes.

Should we be fully satisfied by this model, or is there room for further
improvements? In fact, several problems remain, including:

(i) As we emphasised in Section 19.2, the slow-metaorder limit recovers exactly
the propagator model, but with a propagator that decays as the inverse
square-root of time, corresponding to an exponent β = 1/2. This value of
β is larger than the critical value βc = (1 − γ)/2 that allows one to balance
the long memory in the order flow, described by the exponent γ, and the
mean-reversion of the impact, described by the exponent β (see Section 13.2).
In other words, a propagator decaying as the inverse square-root of time
would lead to a strongly mean-reverting signature plot (see Equation (2.9)).8

This effect is not observed in real markets. In the model presented in
this chapter and the previous chapter, the dynamics of liquidity is itself a
diffusion, which in turn imposes β = 1/2. In order to tune the exponent β
to a value less than 1/2, one should generalise the dynamics of the latent
liquidity.9

(ii) When the participation rate f = j0/J is small, the model predicts the
prefactor Y of the square-root law to depend on the trading speed j0 (see
Equation (19.10)). However, most of the available empirical data is in the
small- f regime, and suggests little dependence on f .

One possible resolution is to assume that a large fraction of the market
trading speed J is due to high-frequency trading. Writing J = JHFT + Jslow,
with JHFT 	 Jslow, one can show that the criterion for Y to be trading-rate
independent is to be in the regime where j0	 Jslow, which is much easier to
satisfy.10

(iii) The model assumes that the marginal supply and demand profile is composed
of a very large number of infinitesimal orders. Fluctuations induced by the
granularity of these orders, or the presence of a very broad distribution
of order sizes, are completely neglected. These fluctuations might play an
important role in reality.

(iv) The model neglects strategic behaviour and therefore lacks realism, particu-
larly at the micro-scale. For example, the model has no reason to satisfy the

8 This assumes that the fundamental price pF(t) itself follows an independent random walk. One could consider
coupling the dynamics of pF(t) to the dynamics of the order flow such that the traded price becomes exactly
diffusive, but this would be ad-hoc.

9 Work in this direction can be found in Benzaquen, M., & Bouchaud, J. P. (2017). A fractional dynamics
description of supply and demand. arXiv:1704.02638.

10 On this point, see: Benzaquen, M., & Bouchaud, J. P. Market impact with multi-timescale liquidity.
arXiv:1710.03734.
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Glosten–Milgrom condition for the bid–ask spread without including sophis-
ticated market-making strategies. Unifying this latent liquidity framework
with both economic intuitions and micro-level behaviours still requires some
work.

(v) There are potential feedback loops between price moves, order flow and
the shape of the latent/visible LOB. In particular, the latent liquidity theory
assumes that latent orders instantaneously materialise in the LOB when the
distance to the price becomes small. Delay in this conversion mechanism
may contribute to liquidity droughts and lead to unstable feedback loops,
especially when price movements accelerate. This mechanism could be at
the heart of the universal power-law distribution of returns, which appears to
be related to self-induced liquidity crises but unrelated to exogenous news.
Understanding how this happens is an important open problem with much
work still to be done!

Take-Home Messages

(i) In a market model with many heterogeneous agents, an extra market
order flux induces a distortion of the otherwise V-shaped latent order
book, and its impact can be fully expressed as a self-consistent integral
equation.

(ii) In the regime of fast executions, one recovers the square-root law
for impact. This framework thus gives a micro-foundation to price
impact, which appears as a universal phenomenon in real markets.

(iii) In the regime of slow executions, one recovers the linear propagator
model for impact, with an inverse square-root kernel.

(iv) Within this framework, all closed-loop trading trajectories result
in positive costs. This means that prices cannot be manipulated,
and therefore makes the framework suitable for trading strategy
optimisation.

(v) Financial markets show complex feedback loops that are not
accounted for by this zero-intelligence version of the model. Incorpo-
rating strategic behaviour within the framework remains a challenge.

19.7 Further Reading

The material of this chapter is heavily based on the following publication:
Donier, J., Bonart, J., Mastromatteo, I., & Bouchaud, J. P. (2015). A fully

consistent, minimal model for non-linear market impact. Quantitative Finance,
15(7), 1109–1121.
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The Information Content of Prices

Most, probably, of our decisions to do something positive, the full consequences of
which will be drawn out over many days to come, can only be taken as the result of
animal spirits – a spontaneous urge to action rather than inaction, and not as the
outcome of a weighted average of quantitative benefits multiplied by quantitative
probabilities.

(John Maynard Keynes)

After our deep-dive into the microstructural foundations of price dynamics,
the time is ripe to return to one of the most important (and one of the most
contentious!) questions in financial economics: what information is contained in
prices and price moves? This question has surfaced in various shapes and forms
throughout the book, and we feel that it is important to devote a full chapter to
summarise and clarify the issues at stake. We briefly touched on some of these
points in Section 2.3. Now that we have a better handle on how markets really
work at the micro-scale, we return to address this topic in detail.

20.1 The Efficient-Market View

Traditionally, market prices are regarded to reflect the fundamental value (of a
stock, currency, commodity, etc.), up to small and short-lived mispricings. In this
way, a financial market is regarded as a measurement apparatus that aggregates all
private estimates of an asset’s true (but hidden) value and, after a quick and efficient
digestion process, provides an output price. In this view, private estimates should
only evolve because of the release of a new piece of information that objectively
changes the value of the asset. Prices are then martingales because (by definition)
new information cannot be anticipated or predicted. In this context, neither
microstructural effects nor the process of trading itself can affect prices, except
perhaps on very short time scales, due to discretisation effects like the tick size.

366
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20.1.1 Major Puzzles

This Platonian view of markets is fraught with a wide range of difficulties that have
been the subject of thousands of academic papers in the last 30 years (including
those with renewed insights from the perspective of market microstructure). The
most well known of these puzzles are:

• The excess-trading puzzle: If prices really reflect value and are unpredictable,
why are there still so many people obstinately trying to eke out profits from
trading? Although some amount of excess trading might be justified by risk
management or cash management, it is difficult to explain the sheer volume of
trading activity in many markets.

• The excess-volatility puzzle: Prices (of stocks, currencies, etc.) move around too
much to be explained by fluctuations of the fundamental value. This is Shiller’s
volatility puzzle. In particular, many large price jumps seem to occur without
any substantial news. Conversely, prices do not move enough if news is released
while markets are closed.1

• The trend-following puzzle: Price returns tend to be positively autocorrelated
on long time scales, such as weeks to months. In other words, some information
about future price moves seems to be contained in the past price changes
themselves. Trend following is present in all asset classes (including stock
indices, commodities, FX, bonds, and so on) and has persisted for at least
two centuries. This is in stark contradiction with the Efficient Market story,
under which such autocorrelations should not be present. Given that the
CTA/trend-following industry managed an estimated 325 billion dollars at
the end of 2013, it is hard to argue that these strategies are economically
insignificant.

20.1.2 Noise Traders

Faced with the excess-volatility and excess-trading puzzles, research in the 1980s
proposed to break away from the strict orthodoxy of rational market participants,
and to instead introduce a new category of uninformed agents (or noise traders) –
see Section 20.5. Including such noise traders allows one to eliminate the no-trade
theorem2 and to account for excess trading. As illustrated by the Kyle model
and Glosten–Milgrom model (see Chapters 15 and 16), the existence of noise
traders is actually crucial for liquidity providers – and thus for the very existence
of markets. However, this line of thought refrains from having the price deviate

1 On this last point, see, e.g., French, K. R., & Roll R., (1986). Stock return variances: The arrival of information
and the reaction of traders. Journal of Financial Economics, 17, 5–26. On excess volatility in currency markets,
see Lyons, R. (2001). The microstructure approach to foreign exchange rates. MIT Press.

2 If I see you want to buy, I infer you know something I do not know and therefore I should not sell. Hence, in a
perfectly informed, rational world, no trading should ever take place.
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from the fundamental value, in the sense that there is no long-term impact of
noise trading on prices. This is quite clear in the continuous Kyle model (see
Section 15.4), where noise traders participate in the price-formation process, but
the impact of their trades does not contribute to price volatility. As we emphasised
in the introductory section of Chapter 11, price impact in this story merely means
that trades forecast fundamental prices – but noise trading by itself cannot increase
long-term volatility, or create long-lived mispricings.

20.2 Order-Driven Prices

After accepting the presence of non-rational agents, the next conceptual step is
to accept that all trades (informed or random, large or small) possibly contribute
to long-term volatility. This corresponds to a paradigm change: instead of
fundamental value driving prices, the main driver of price changes is the order flow
itself – whether informed or random. This is the order-driven view of markets,
which we review in this section.

20.2.1 Trades Impact Prices

At least naively, the order-driven theory of price changes offers a solution to the
excess-volatility puzzle: if trades by themselves move prices, then excess trading
could create excess volatility. This hypothesis is enticing for several reasons:

• As we have argued in Chapters 12 and 13, impact is surprisingly large (a
metaorder representing 1% of the average daily volume moves the price by about
10% of its average daily volatility) and long-lived (the impact of an order decays
slowly, as a power-law of the lag). Even small, random trades impact prices
significantly.

• If order flows become by themselves a dominant cause for price changes, market
participants should attempt to predict future order flows themselves, rather than
attempting to predict fundamentals (which may play a role, but only on much
longer time scales). This ties up neatly with Keynes’ famous beauty contest:

Investment based on genuine long-term expectation is so difficult [. . . ] as to be scarcely
practicable. He who attempts it must surely [. . . ] run greater risks than he who tries to
guess better than the crowd how the crowd will behave

which is much closer to the way market participants operate. As reformulated
by A. Shleifer and L. Summers:3

The key to investment success is not just predicting future fundamentals, but also
predicting the movement of other active investors. Market professionals spend consid-
erable resources tracking price trends, volume, short interest, odd-lot volume, investor

3 Shleifer, A. & Summers, L. H. (1990). The noise trader approach to finance. The Journal of Economic
Perspectives, 4(2), 19–33. The emphasis is ours.



20.2 Order-Driven Prices 369

sentiment indexes and numerous other gauges of demand for equities. Tracking these
possible indicators of demand makes no sense if prices responded only to fundamental
news and not to investor demand.

This is likely to be the mechanism for the universal trend-following effect
mentioned as the third major puzzle in Section 20.1. In fact, artificial market
experiments show that even when the fundamental value is known to all agents,
they are tempted to forecast the behaviour of their fellow subjects and end up
creating trends, bubbles and crashes. The temptation to outsmart our peers seems
to be too strong to resist!

• The order-flow-driven price scenario allows one to understand why self-exciting
feedback effects are so prevalent in financial markets. As we have seen on
various occasions, volatility and activity are clustered in time, which strongly
suggests that the activity of the market itself leads to more trading. This,
in turn, impacts prices and generates more volatility (see Chapters 2 and
9). In fact, calibrating any of these self-exciting models on data leads to
the conclusion that a very large fraction (∼80%) of market activity and
volatility is self-generated, rather than exogenous. This fits nicely with Shiller’s
excess-volatility puzzle. Feedback is also a natural mechanism for the universal
nature of return distributions, including their power-law tails, which appear to
be asset-independent and unrelated to news (see Section 2.2.1).

20.2.2 The Statistically Efficient View

At this point, we recall that prices are approximately martingales (or diffusive) over
time scales spanning from seconds to weeks. This is the content of the flat signature
plot, repeatedly discussed throughout the book, which tells us that volatility is
approximately independent of time lag (see Section 2.1.4).

In the Efficient Market picture, this phenomenon is a consequence of market
prices only reacting to unpredictable news, and almost immediately digesting the
corresponding information content. In practice, this explanation is hard to believe,
because the impact of news on an asset’s fundamental value is so difficult to
assess that at least some amount of short-term mispricing should be present, even
in very liquid markets. But this should induce excess short-term volatility and
mean-reversion. For example, to make the signature plot for the S&P 500 futures
contract approximately flat, mispricings must be less than 0.05% of the asset’s
price and have a reversion time of only 10 minutes. How can prices be so precise
when there is so much uncertainty? Even under the Efficient Market Hypothesis,
there must therefore be some other mechanism in place to explain why signature
plots are universally flat.

In fact, the long-range autocorrelation in order flows (see Chapter 10) is clear
proof of the presence of long-lived imbalances between supply and demand,
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which markets cannot quickly digest and equilibrate (as assumed in the Efficient
Market picture). Naively, these long-lived imbalances should create trends and
mispricings. In Chapter 13, we saw that these effects are mitigated by liquidity
providers who (in normal market conditions) compete to remove any exploitable
price pattern and thereby buffer these imbalances. This is essentially the content
of the propagator model, in which impact decay is fine-tuned to compensate the
long memory of order flow, and causes the price to be close to a martingale.
As we discussed in Section 2.3, this makes prices statistically efficient without
necessarily being fundamentally efficient. In other words, competition at high
frequencies is enough to whiten the time series of returns, but not necessarily to
ensure that prices reflect fundamental values.

One could thus imagine a hypothetical market where traders only seek to exploit
short-term statistical arbitrage opportunities, without any long-term changes in
fundamental value. By doing so, such traders’ activity makes prices unpredictable
(i.e. flattens the signature plot) and simply propagates the high-frequency value
of volatility to long time scales. The resulting volatility would in this case have
no reason whatsoever to match the fundamental volatility (which is zero in our
hypothetical market). Hence, one plausible explanation for the excess-volatility
puzzle is that the trading-induced volatility is larger than the fundamental volatility.

Some economists wince at this scenario, because it would imply that prices
decouple from fundamental values. For example, in the words of French and Roll:4

Under the trading noise hypothesis, stock returns should be serially correlated [. . . ]: unless
market prices are unrelated to the objective economic value of the stock, pricing errors must
be corrected in the long run. These corrections would generate negative autocorrelations.

In other words, noise trading should imply negative autocorrelations and a
decaying signature plot; otherwise, prices would err away from the economic value
of the asset. In the context of classical economics, however, this cannot occur and
the only possible conclusion is that a flat signature plot is proof that prices must
always be close to their fundamental values.

However, another conclusion is warranted if we pay heed to Black:

We might define an efficient market as one in which price is within a factor of 2 of value, i.e.
the price is more than half of value and less than twice value. The factor of 2 is arbitrary, of
course. Intuitively, though, it seems reasonable to me, in the light of sources of uncertainty
about value and the strength of the forces tending to cause price to return to value. By this
definition, I think almost all markets are efficient almost all of the time. Almost all means
at least 90%.5

4 French, K. R., & Roll, R. (1986). Stock return variances: The arrival of information and the reaction of traders.
Journal of Financial Economics, 17(1), 5–26. The emphasis is ours.

5 Black, F. (1986). Noise. The Journal of Finance, 41(3), 528–543. In his introduction, Black also writes: “I
recognize that most researchers [...] will regard many of my conclusions as wrong, or untestable, or unsupported
by existing evidence. [...] In the end, my response to the skepticism of others is to make a prediction: someday,
these conclusions will be widely accepted. The influence of noise traders will become apparent.”
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Black’s statement is that the actions of traders who seek to exploit statistical
arbitrage lead to martingale prices that do indeed err away from their fundamental
values by large amounts, and for long times. In Section 2.3.2, we estimated that
the order of magnitude for mean-reversion around the fundamental value can be as
long as a few years. Such a long-term mean-reversion hardly leaves any trace that
econometricians or traders can exploit (see Equation (20.3)).

How can such substantial mispricings remain for so long? In other words,
why does the aggregation process that financial markets are supposed to realise
fail so badly? One commonly cited reason is that the fundamental value is
determined so vaguely that the usual arbitrage mechanism (i.e. pushing the price
back to its fundamental value) is not strong enough. In contrast to Kyle’s world,
where the fundamental price is revealed at some time in the future, there is
not any terminal time where the true level of, say, the S&P500 is announced.
While this anchoring does happen at maturity for bond prices or option prices,
this idea is clearly not relevant for stock prices or currency levels. Therefore,
the spring driving prices back to fundamental values is either non-existent, or
otherwise very loose. Another possible reason for persistent mispricings is that
self-referential effects can actually prevent the market as a whole from converging
to an unbiased best guess of the fundamental value (see Section 20.3 for an explicit
scenario).

20.2.3 Permanent Impact and Information

If order flow is the dominant cause of price changes, “information” is chiefly
about correctly anticipating the behaviour of others, as Keynes envisioned, and
not about fundamental value. The notion of information should then be replaced
by the notion of correlation with future returns, induced by future flows. For
example, when all market participants interpret a positive piece of news as negative
and sell accordingly, the correct move for an arbitrageur is to interpret the news as
negative, even if doing so does not make economic sense. Of course, if all market
participants are rational and make trading decisions based on their best guess of
the fundamental value, order flow will just reflect deviations from fundamentals
and the Efficient Market picture is recovered.

In a market where price formation is dominated by order flow, the difference
between a noise trader and an informed trader is merely the strength of correlation
between the trader’s trades and the future order flow. This allows informed traders
to forecast future price changes. For noise traders, there is no such correlation.
The short-term reaction part of impact is however similar in both cases.6 In the

6 See “Impact Decay” in Section 19.7 for empirical studies on how informed and noise trades impact prices
similarly on the short run and differently on the long run; see in particular Tóth, B., Eisler, Z., & Bouchaud,
J.-P. (2017). The short-term price impact of trades is universal. https://ssrn.com/abstract=2924029.
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long run, the price slowly reverts to its initial value for noise trades, but retains a
permanent impact component for informed trades, due to the continued pressure
of future order flow. The propagator model (see Chapter 13) suggests an even
more complex picture, where the impact of all individual trades tends to zero, but
the long-range autocorrelation of trades causes order flow to create a non-zero
contribution to volatility.

It could well be the case that even random trades have a small but non-zero
permanent impact. This is what happens in the Santa Fe model (see Chapter 8),
where all trades are (by definition) random, but the rest of the market acts as if they
contain some information. As the model illustrates, random trades are enough to
generate volatility. This is also the case in the Kyle model (see Chapter 15), if we also
assume that market-makers think there is information (i.e. σF > 0) when actually
there is none. In the absence of strong anchoring to a fundamental value, the price
ends up wandering around because of the order flow itself, with a volatility generated
by the price-formation mechanism at the micro-scale (as we argued in the previous
section).

20.3 A Self-Referential Model for Prices
In the order-driven theory of asset prices, fundamental values matter less than market
participants’ trades. Within this framework, an important question arises: why does
some kind of law of large numbers not remove mispricings, as the classical arbitrage
argument would predict? After all, in the Efficient Market view, even if individuals
have a vague idea about the fundamental value, the aggregation of all opinions should
make the price converge to its true value pF. In a nutshell, the toy model below
illustrates two important situations where such convergence to pF may fail: strong
correlations (all agents observe the same news and the same price) and/or extreme
financial disparities (the financial weight of some agents remains dominant even for
large population sizes). This toy model is of course not meant to be taken literally,
but it provides some useful insights on why large crowds may fail to behave wisely.

We now discuss this point more formally. For a given agent i ∈ {1, . . . ,N}, let p̂i
t

denote the agent’s estimate of the asset’s value at time t, where this estimate is based
on his/her preferences, information set and information-processing capabilities. To
keep things simple, we do not consider the detailed price-formation process, but
instead assume that the market price at any given time t is simply given by the
weighted average price estimate across all agents.7 In this framework,

pt+1 − pt =

N∑
i=1

wi ×
(
p̂i

t+1 − p̂i
t

)
,

where wi is the weight of agent i, with
∑N

i=1 wi = 1. Let
δi

t = p̂i
t − pF,t

denote the mispricing of agent i at time t, where pF,t is the true fundamental price at
time t (which the agents strive to discover), and let

δ̄t :=
N∑

i=1

wiδ
i
t = pt − pF,t

denote the average mispricing across all agents.

7 This is actually in line, when all wi→ 0, with a Walrasian auction mechanism as detailed in Chapter 18.
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In this model, we assume that agents change their forecasts based on their own
assessment of fundamental information, and also on the actions of other agents,
which reflect the wisdom of the crowd on the price. In other words, we account
for the fact that in uncertain conditions, people tend to rely on the judgement of
others as well as on true information.

A simple dynamical equation incorporating these effects is:

δi
t+1 = ρδi

t︸︷︷︸
error correction

+ γδ̄t︸︷︷︸
self-referential

+ ηi
t︸︷︷︸

noise

+ (βi
t − 1)ξt︸����︷︷����︸
news

, (20.1)

where ρ ≤ 1, γ ≥ 0, and ξt := pF,t+1 − pF,t, which we assume to have mean zero.
(This equation generalises the model of Chapter 18: compare in particular with
Equation (18.2), which corresponds to the case ρ = γ = 0.)

The terms of Equation (20.1) can be interpreted as follows:

• The first term indicates that due to information processing, ρ ≤ 1 and agents tend
to correct their idiosyncratic pricing errors.

• The second term captures the self-referential effect. It indicates that agents tend
to react to the last mispricing error of the market, for fear they are missing some
information that may be revealed later, but that is already available to some other
investors. One should expect the value of γ to be dependent on the amplitude of
the mispricing and to decrease for large mispricings. In other words, people pay
less and less attention to large mispricings (both positive and negative) that look
more and more unreasonable. To model these effects, we assume that γ is an even
function of δ̄ and choose:8

γ(δ̄) = γ0 − γ2δ̄
2 +O(δ̄4); γ0, γ2 ≥ 0. (20.2)

• The third term is idiosyncratic noise, which we assume to have mean zero and be
independent both in time and across agents.

• The last term describes how news affects the fundamental value, while having
different impact on different agents, some of whom over-react (βi

t > 1); others of
whom under-react (βi

t < 1).

Multiplying Equation (20.1) by wi and summing over i, we arrive at the following
evolution equation for δ̄t:

δ̄t+1 = (ρ+ γ0)δ̄t − γ2δ̄
3
t +

N∑
i=1

wiη
i
t + ξt

⎛⎜⎜⎜⎜⎜⎝ N∑
i=1

wiβ
i
t

⎞⎟⎟⎟⎟⎟⎠ .
We first consider the case of a very large number of agents N, with weights wi all
going to zero in the N→∞ limit. In this case, the idiosyncratic term averages to zero
(as in Chapter 19), while the last term can be expressed in terms of the average bias
at time t,

β̄t =

N∑
i=1

wiβ
i
t.

The temporal evolution of the average mispricing then becomes:

δ̄t+1 = (ρ+ γ0)δ̄t − γ2δ̄
3
t + (β̄t − 1)ξt.

This is a well-known equation in the context of phase transitions in physics or
bifurcations in dynamical systems. The equation has several different regimes:

8 Adding a term linear in δ̄ would lead to a systematic positive or negative bias in the mispricing, but would not
dramatically change the following discussion.
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(i) In the case γ0 = γ2 = 0 and β̄t = 1 (which corresponds to the last mispricing
having no influence on the agents’ present forecasts, and there being no average
bias in the interpretation of news), the temporal evolution of the average
mispricing is given by

δ̄t+1 = ρδ̄t.

This leads to δ̄t = ρ
tδ̄0, which is an exponential relaxation towards zero. In

this case, agents individually correct their mistakes and all idiosyncratic errors
disappear after a time ≈ | lnρ|−1. This is the Efficient Market story.

(ii) In the case γ0 = γ2 = 0 but β̄ � 1 (which corresponds to the agents being
collectively biased in their interpretation of news), the temporal evolution of
the average mispricing is given by9

δ̄t+1 = ρδ̄t + (β̄t − 1)ξt. (20.3)

This is a standard AR process, with mean zero, and mean-reverting pricing
errors of variance

V[δ̄] =
Et[(β̄− 1)2]σ2

F

1− ρ2
,

and a mean-reversion time given by | lnρ|−1. When ρ → 1 (i.e. when the
relaxation time is very large, say of the order of years), the pricing errors are
themselves close to a random walk, leading to some excess volatility in the
transaction price. Interestingly, in the same limit, pricing errors can become
very large even if β̄ is close to 1. The opposite limit (ρ→ 0), where mispricings
quickly revert to zero, corresponds exactly to the high-frequency noise model
introduced in Section 2.1.3, with a strongly decreasing signature plot. In this
regime, the near-absence of excess high-frequency volatility in data can only be
explained if mispricings disappear in a few seconds, which is quite unrealistic.

(iii) In the case γ0 > 0 but ρ + γ0 < 1, which corresponds to weak feedback across
agents, the situation is similar to the one just described (with an effective value
ρeff = ρ + γ0 > ρ). Interestingly, the influence of past mispricings on agents’
perceptions slows down the mean-reversion time and increases the magnitude
of mispricings and of excess volatility.

(iv) When ρeff = ρ + γ0 ≥ 1, a bifurcation takes place. The Efficient Market fixed
point δF = 0 becomes unstable and is replaced by two fixed points

δ∗ = ±
√
ρeff − 1
γ2

,

around which mispricings fluctuate due to the noise term. In other words, when
the feedback parameter γ0 becomes sufficiently strong, two self-fulfilling states
can appear: one where the market collectively overvalues the asset (δ∗ > 0);
the other where the market collectively undervalues the asset (δ∗ < 0). The
mispricing sets in because agents are over-influenced by the behaviour of
others. These periods of over-valuation or under-valuation can last for a very
long time. In the language of physics, this is similar to a point particle in a
“Mexican-hat” potential. The transition from positive to negative mispricing
requires the particle to hop over the energy barrier separating the two minima –
a process that can take a very long time when δ∗ is large and/or when the noise
amplitude is small.

The above toy model provides a concrete example of a situation where a market
with an infinite number of agents fails to produce the right price, because of
self-referential effects. Even in the regime where feedback effects are not strong
enough to destabilise the Efficient Market fixed point, one sees that price errors might

9 This situation is precisely what is envisaged in Summers, L. (1986). Does the stock market rationally reflect
fundamental values? The Journal of Finance, 41(3), 591–601.
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persist for long times because of the weakness of the mean-reverting (arbitrage)
forces when ρ ↑ 1.

Within this modelling framework, one can also discuss the case of strongly
heterogeneous agents, where the weights wi are so broadly distributed that the law of
large numbers ceases to apply. Concretely, this means that if one agent represents a
finite fraction of the total market, the idiosyncratic noise ηi

t does not average to zero.
In this case, the market price remains dominated by the pricing errors of a handful of
individuals, even when N→∞. This situation may well occur in less-liquid financial
markets.

20.4 Conclusion

In summary, there are two fully consistent yet hardly reconcilable views about the
dynamics of financial markets.

(i) One story posits that the fundamental value evolves as a random walk, and that
the price follows suit, almost immediately and without errors. High-frequency
dynamics and microstructural effects then define the so-called price-discovery
process – again referring to a Platonian word where the price exists in
abstracto, and the market must “discover” it. Markets digest real economic
information and are fundamentally efficient. Beating the market is difficult
and requires having a good model of the fundamental value.

(ii) The other story posits that prices are impacted by order flows, irrespective
of whether or not these order flows are informed. High-frequency dynamics
and microstructural effects then define the so-called price-formation process.
Importantly, in this view, the price would not exist in the absence of trading.
The fine balance between liquidity providers and liquidity takers leads to
the removal of any short-term predictability, such that prices are statistically
efficient regardless of whether they reflect any fundamental value. Beating the
market is difficult and requires having a good model of the future order flow –
i.e. how the crowd will behave.

Deciding which is of these stories is closest to reality should not be a matter of
belief, but rather of scientific investigation. Although no smoking-gun proof is yet
available, research in recent decades has uncovered a considerable accumulation
of puzzles and anomalies that are unexplained by the fundamental-value story but
quite naturally accounted for in the order-flow story. In our opinion, this strongly
argues in favour of Keynes, Shiller and Black (among others) and against the
Efficient Market school. The recent accumulation of microstructural stylised facts,
which allow ever-greater focus on the price formation mechanism, all but confirm
that fundamental information plays a relatively minor role in the dynamics of
financial markets, at least on short to medium time scales.

Perhaps the most relevant contribution of the field of market microstructure to
this debate is an understanding of the order of magnitude of price impact, and
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its slow decay, both of which reveal that even small trades impact prices. The
order-flow theory of price changes opens the door to a quantitative, principled
understanding of the various self-exciting and self-referential effects in financial
markets. These effects are probably responsible for the most salient stylised facts
reviewed in Chapter 2, including both volatility clustering and the heavy tails of
the return distribution.

Take-Home Messages

(i) In the standard economic view, markets are supposed to reflect the true
value of assets. By definition, prices are unpredictable and diffusive.

(ii) This view is faced with several puzzles, including excess trading,
excess volatility and trend-following. Noise traders are often added
to models to account for the first puzzle (and to make trading happen
at all), but the other two puzzles remain. In particular, fundamental
value often plays a major role in price modelling.

(iii) A competing view is that prices are driven by order flow – regardless
of their informational content. In this view, the force ensuring that
prices remain close to their fundamental value is too weak to play a
decisive role, and markets are dominated by other effects.

(iv) In order-driven markets, traders should predict the behaviours of
others, rather than fundamentals. The notion of information is
replaced by the notion of correlation with other agents’ behaviours.
This might explain why markets are observed to be so endogenous
and volatile, and can result in long-lasting mispricings.

(v) Because of price impact, arbitrage strategies iron out the very
predictability that they exploit. The proliferation of such strategies
thus contributes to making prices unpredictable. As a consequence,
markets can be statistically efficient without being fundamentally
efficient – i.e. unpredictable while erring away from fundamentals.

(vi) The question of whether markets are driven by fundamental values
or by human behaviours is far from being settled. However, accumu-
lating empirical evidence brings the Efficient Markets picture further
and further into question.
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Introduction

We are now approaching the end of a long empirical, theoretical and conceptual
journey. In this last part, we will take the important step of accumulating all this
knowledge about markets to illuminate some important decisions about how to
best act in them. In the following chapters, we will address two practical topics of
utmost importance for market participants and regulators: optimal trade execution
and market fairness and stability.

For both academics and practitioners, the question of how to trade and execute
optimally is central to the study of financial markets. Given an investment decision
with a given direction, volume and time horizon, how should a market participant
execute it in practice? Addressing this question is extremely difficult, and requires
a detailed understanding of market dynamics that ranges from the microscopic
scale of order flow in the LOB (e.g. for optimising the positioning of orders
within a queue or for choosing between a limit order and a market order) to
the mesoscopic scale of slow liquidity (e.g. for scheduling the execution of
large investment decisions over several hours, days or months). Many important
questions on these topics have been active areas of research in the last two decades.

The final chapter of this book will address the critical question of market fairness
and stability. These topics have been at the core of many debates in recent years –
especially with the rise of competition between exchanges and high-frequency
trading. In this last chapter, we will discuss how some market instabilities can
arise from the interplay between liquidity takers and liquidity providers, and can
even be created by the very mechanisms upon which markets are built.

In this jungle, regulators bear the important responsibility of designing the
rules that define the ecology in financial markets. As we will discuss, because
the resulting system is so complex, sometimes these rules can have unintended
consequences on both the way that individual traders behave and the resulting
price-formation process. Therefore, sometimes the most obvious solutions are not
necessarily the best ones!

We conclude with a discussion of an interesting hypothesis: that markets
intrinsically contain – and have always contained – some element of instability.
From long-range correlations to price impact, this book has evidenced a collection
of phenomena that are likely inherent to financial markets, and that we argue
market observers, actors and regulators need to understand and accept. Therefore,
understanding how to make sense of the many mysterious aspects of the market
price may well be the most important question in financial markets today.
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Optimal Execution

I will remember that I didn’t make the world, and it doesn’t satisfy my equations.
(Emanuel Derman and Paul Wilmott “The Modeler’s Oath”)

Optimal execution is a major issue for financial institutions, in which asset
managers, hedge funds, derivative desks, and many more seek to minimise the
costs of trading. Such costs can consume a substantial fraction of the expected
profit of a trading idea, which perhaps explains why most active managers fail to
beat passive index investing in the long run. Market friction is especially relevant
for high-turnover strategies. Given the importance of these considerations, it is
unsurprising that a whole new branch of the financial industry has emerged to
address the notion of best execution. Nowadays, many brokerage firms propose
trading costs analysis (TCA) and optimised execution solutions for their buy-side
clients.

Trading costs are usually classified into two groups:

• Direct trading costs are fees that must be paid to access a given market. These
include brokerage fees, direct-access fees, transaction taxes, regulatory fees and
liquidity fees.1 These fees are all relatively straightforward to understand and to
measure. As a general rule, direct trading costs are of the order of 0.1–1 basis
points and SEC regulatory fees are 0.01 basis points.

• Indirect trading costs arise due to market microstructure effects and due to the
dynamics of the supply and demand. In contrast to direct trading costs, indirect
trading costs are quite subtle. These costs include the bid–ask spread and impact
costs. As we discussed in Chapter 16, the bid–ask spread is a consequence of the
information asymmetry between different market participants and is determined
endogenously by market dynamics. Spread costs are typically a few basis points
in liquid markets, but can vary substantially over time, according to market

This chapter is not essential to the main story of the book.
1 Liquidity fees are typically charged per order and are generally different for market and limit orders. With these

so-called “maker-taker fees”, exchanges usually aim to incentivise liquidity provision.

384



21.1 The Many Facets of Optimal Execution 385

conditions. Note that the tick size can have a considerable effect on the value
of the spread, especially for large-tick stocks.

Impact costs are also a consequence of the bounded availability of liquidity.
These costs also arise endogenously, but are deceptive because they are of
a statistical nature. Impact is essentially invisible to the naked eye (after a
buy trade, the price actually goes down about half the time, and vice-versa),
and only appears clearly after careful averaging (see Chapter 12). As such,
impact costs have historically been disregarded by the industry, although they
actually represent the lion’s share of costs for moderate to large metaorders. The
square-root law in Equation (12.6) can be used to estimate the unitary impact
cost to be 2/3×σT

√
Q/VT . For example, when trading 1% of the daily traded

volume VT on a stock with a 2% daily volatilityσT , the square-root law estimates
the impact to be about 15 basis points. This is an order of magnitude larger than
direct costs and spread costs (which are of the order of 1 basis point). Therefore,
modelling impact is critical to devising good execution strategies.

In this chapter, we discuss the so-called optimal execution problem: given that
a financial institution has taken the decision to buy or sell a quantity Q of an
asset, how is this decision implemented in the market such that the desired quantity
gets executed at the best possible price? As we have emphasised throughout this
book, liquidity rationing is a fundamental property of markets (see in particular
Sections 10.5 and 18.1). Large orders cannot be executed instantaneously, so
trading must instead occur over an investment horizon T , which can sometimes
be quite long. What is the optimal horizon T? What is the corresponding trading
schedule? Should one trade at a uniform rate during the time interval [0,T ], or
should one front- or back-load the execution? Should one use market orders or
limit orders? Is it wise to join a long bid- or ask-queue? In the coming sections,
we address these important questions and give a short account of the enormous
literature on optimal execution.

21.1 The Many Facets of Optimal Execution

The optimal execution problem first requires setting a suitable loss function
to minimise. One possible example is the average execution shortfall, or
slippage, which compares the average execution price and the decision price (see
Equation (21.2) below). Other objectives can be considered, such as minimising
the tracking error between the execution price and the VWAP or TWAP prices
(see Section 10.5).

The optimisation problem can then be subdivided into several approximately
independent decisions:
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(i) Execution schedule: One should determine how much volume to execute
during each time interval. This will depend on the liquidity available in the
market and the model selected for describing price impact.

(ii) Market venue: In modern financial markets, it is common for assets to
be traded on several different exchanges simultaneously. As well as their
geographical differences, many such exchanges differ by their fee structure
and the details of their trading mechanism (e.g. whether trading is in a lit
exchange or a dark pool).

(iii) Type of order: Several orders can be used to execute a trade, such as a limit
order (iceberg or visible) or a market order (immediate or cancel, fill or kill,
etc.) – see Section 3.2.2.

(iv) Timing of order placement: Both the choice of order type and the timing of
order submissions depend on many factors, including the instantaneous state
of the LOB and the availability of high-frequency prediction signals.

21.2 The Optimal Scheduling Problem

21.2.1 Linear Impact Models

As we have discussed many times throughout the book, market participants who
wish to trade large quantities of an asset must split their intended volume into
many child orders, which they then submit incrementally. When traders do so, they
must decide how to schedule these child orders. Since each child order impacts
the price, the execution price of subsequent child orders depends on the time
at which previous child orders were submitted (and possibly on their volume).
Traders attempt to minimise their total impact costs by optimally scheduling the
arrival time of child orders.

This problem can be formulated precisely in the context of propagator models
in discrete time (see Chapter 13). Consider a trader2 who wants to buy a given
quantity Q of an asset over a fixed, specified time horizon T . We assume that the
trader chooses to execute the metaorder via a sequence of child market orders with
identical size υt = υ0, interspersed with periods of inactivity (during which υt = 0),
such that

T∑
t=1

υt = Q. (21.1)

For such traders, the primary performance metric is the execution shortfall (or
slippage)

Δ =

T∑
t=1

υt (pt −m0), (21.2)

2 By symmetry, the same arguments hold for sellers.
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which measures the total price paid for executing the metaorder, relative to the
initial mid-price m0, including the bid–ask spread. Using a linear propagator
specification for the mid-price dynamics (see Equation (13.7)), the average
execution shortfall is given by3

E[Δ] =
T∑

t=1

υt

⎛⎜⎜⎜⎜⎜⎜⎝ ∑
1≤t′<t

G(t− t′)υt′

⎞⎟⎟⎟⎟⎟⎟⎠+ T∑
t=1

υt st

2
, (21.3)

where we have used pt = mt + st/2. We assume that the sign of the metaorder is
uncorrelated with the order flow from the rest of the market, and that in the absence
of our investor, the price is a martingale, so its evolution does not contribute to the
average execution shortfall. These assumptions are far from innocuous, since the
information used to make a trading decision could well be shared with a number of
other investors, who may trade in the same direction during the same time interval.
Note that in treating E[Δ] as a cost, we make the implicit assumption that the
impact will eventually decay to zero (i.e. G(t→∞)= 0), so that none of the impact
can be captured by the investor when unwinding the position.4

Equation (21.3) shows that the expected execution shortfall is partly due to the
spread and partly due to the impact of past trades. For simplicity, we assume that
the spread is constant, such that st = s for all t. If the spread was time-varying,
the optimisation problem would be more complicated, since traders would try
to take advantage of moments where the spread is small, and the two terms in
Equation (21.3) would interact in a non-trivial way. Assuming s to be constant
simplifies the problem considerably, because doing so allows us to disregard the
last term in Equation (21.3) in the optimisation program.

By permuting the dummy variables t and t′, we can express the impact term in
a symmetric form:

T∑
t=1

υt

⎛⎜⎜⎜⎜⎜⎝ t∑
t′=1

G(t− t′)υt′

⎞⎟⎟⎟⎟⎟⎠ = 1
2

T∑
t,t′=1
t�t′

υtG(|t− t′|)υt′ . (21.4)

This is a quadratic form in υt that must be minimised under the condition in
Equation (21.1).

The difficulty in performing this minimisation comes from the discrete nature
of the υt terms. A simplification occurs if the propagator G(t) varies sufficiently
slowly that the sum in Equation (21.4) can be replaced by integrals. Defining the

3 Strictly speaking, the propagator G(t) considered here differs from that of Equation (13.7) by a factor υ0, equal
to the size of each individual trade.

4 If impact was fully permanent, the average cost of a round-trip would just be equal to the bid–ask spread.
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trading intensity j(t) such that υt = j(t)dt, Equation (21.4) becomes5

1
2

T∑
t,t′=1; (t�t′)

υtG(|t− t′|)υt′ −→ 1
2

� T

0
dtdt′ j(t)G(|t− t′|) j(t′), (21.5)

which must be minimised under the constraint
∫ T

0
dt j(t) = Q. We are now in the

realm of standard variational calculus. Introducing a Lagrange multiplier ζ that
enforces the constraint Equation (21.1), and setting the derivative with respect to
j(t) to zero, it follows that j(t) must satisfy the following condition for all t:∫ T

0
dt′G(|t− t′|) j(t′) = ζ. (21.6)

Equation (21.6) is difficult to solve exactly. However, in the particular case of an
exponentially decaying propagator G(t)=G0e−ωt, one can check that the following
(so-called “bucket”) solution solves the above equation:6

j∗(t) =
Q

1+ωT/2

[
δ(t)+ δ(T − t)+

ω

2

]
. (21.7)

Under this optimal schedule, a fraction 1/(2+ωT ) of the total volume should be
executed at the open and at the close, while the rest should be executed at a constant
speed throughout the interval (0,T ). Interestingly, in the limit where ωT 	 1 (i.e.
for a quasi-instantaneous impact decay), one finds that a TWAP (constant trading
speed) execution

j∗(t)→ Q
T

; (ωT →∞) (21.8)

is optimal. The minimal cost associated with this trading schedule is given by

E[Δ∗] =G0

( Q
2+ωT

)2

(1+ωT )+
Qs
2
. (21.9)

The last term comes from the spread and is independent of the trading schedule,
whereas the first term (which represents the impact cost) is a decreasing function of
the horizon T . As expected within a quadratic cost model, the slower the execution,
the smaller the impact costs. Observe that in practice the execution cannot be
infinitely slow; otherwise, the expected gain that motivates trading would be totally
erased. Therefore, the execution horizon T must remain smaller than the prediction
horizon. We will discuss this issue in more detail in Section 21.2.3.

Another interesting case is the power-law propagator G(t) ∝ (ωt)−β, for which
the optimal solution has a U-shaped profile that diverges as t(β−1)/2 (or as

5 Note that j(t) should be interpreted as the probability that a given market order belongs to the metaorder times
the total rate of market orders per unit time.

6 Note that the δ-functions in Equation (21.7) are such that
∫ T

0 dtδ(t) = 1/2, since both are localised right at the
edges of the interval [0,T ].
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Figure 21.1. Optimal schedules for (solid curve) an exponential propagator,
which leads to a bucket-shaped execution profile, (dotted curve) a power-law
shaped propagator, which leads to a U-shaped execution profile, and (dashed
curve) an Almgren–Chriss schedule penalising the variance of the shortfall, which
leads to a front-loaded execution profile. The black dashed line shows a TWAP
schedule.

(T − t)(β−1)/2) close to the edges (see Figure 21.1). The solution is given by the
function7

j∗(t) = A(β)QT−β
√

tβ−1(T − t)β−1,

where A(β) = βΓ[β]/Γ2[(β+ 1)/2], such that Equation (21.1) is satisfied.
More generally, without any specific assumptions on the shape of G(t), one can

prove that the optimal solution must be symmetric about T/2:

j∗(t) = j∗(T − t), for all t. (21.10)

To see why this is the case, substitute t with T − t in Equation (21.6) and then
change variables from t′ to T − t′. Performing these transformations illustrates that
j∗(t) and j∗(T − t) obey the same equation, so j∗ is symmetric about T/2.

In reality, G(t) cannot be completely arbitrary for the solution to be reasonable,
in the sense that for all t, j(t)≥ 0 for buy metaorders and j(t)≤ 0 for sell metaorders.
This is a desirable property, because we would not want the solution to oscillate
between buy and sell orders in an attempt to arbitrage one’s own impact. This
would be the counterpart, in the context of execution, of a price manipulation
strategy (see Section 19.5). A sufficient condition for this not to occur is that the

7 See: Gatheral, J., Schied, A., & Slynko, A. (2012). Transient linear price impact and Fredholm integral
equations. Mathematical Finance, 22(3), 445–474.
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propagator is absolutely monotonic:

(−1)n dnG(t)
dtn

≥ 0, for all t ≥ 0, for all n ≥ 1.

The exponential function G(t) =G0e−ωt and the power-law function G(t) ∝ (ωt)−β

are both examples of absolutely monotonic functions.

21.2.2 The Almgren–Chriss Problem

So far, we have assumed that the investor’s only concern is the expected execution
shortfall. This assumes that the investor seeks to execute a large number of
metaorders, so that shortfall fluctuations average out in his/her P&L curve.
However, the price in a given instance can wander during the execution period,
and can accidentally lead to a very high implementation shortfall (or, in good cases,
to a very negative implementation shortfall). For traders who submit metaorders
infrequently, this is uncomfortable.

To deal with these fluctuations, the natural idea (first considered in a seminal
paper by Almgren and Chriss) is to add a penalty term proportional to the variance
of the shortfall. Neglecting the impact contribution to the variance, which is indeed
small in practice, the shortfall variance can be computed from Equation (21.2) in
the continuum limit and after integration by parts:

V[Δ] =V

[∫ T

0
dt j(t) (p(t)− p0)

]
=V

[∫ T

0
dp(t) (Q− q(t))

]
,

where q(t) is the executed volume up to time t. Assuming that the price is a
Brownian motion with volatility σ and that the execution schedule is independent
of the price path leads to

V[Δ] = σ2
∫ T

0
dt (Q− q(t))2.

The new objective function then reads:

E[Δ] −→ E[Δ]+Γσ2
∫ T

0
dt (Q− q(t))2,

where Γ is a measure of risk aversion and the last term penalises any quantity
that remains unexecuted. For a propagator that decays very quickly (ωT 	 1), one
can again solve this optimisation problem, yielding the celebrated Almgren–Chriss
optimal schedule:8

q∗(t) :=
∫ t

0
dt′ j∗(t′) = Q

[
1− sinh(Ω(T − t))

sinhΩT

]
, Ω2 =

Γσ2

Ḡ0
.

8 We have rescaled G0→ Ḡ0 =G0/ω such that the role of impact remains non-trivial in the limit ω→∞.
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The initial trading speed is given by

j∗(0) = Q
Ω

tanhΩT
. (21.11)

If Ω→ 0, then j∗(0)→ Q/T . In this case, the shortfall risk is irrelevant and one
recovers a TWAP profile. For very large risk aversion Γ→∞, by contrast, j∗(0) =
QΩ, which tends to infinity. In this case, trading is very intense early on, so that
execution is quickly completed and the trader is immune to the fluctuations of the
underlying asset. In other words, risk aversion leads to a front-loaded execution
profile.

21.2.3 Trading with a Signal

Until now, we have assumed that in the absence of the trader, the price is a
martingale. In this framework, we saw that impact costs are minimised when the
execution horizon is infinite. This conclusion is of course modified if we assume
that our investor buys because he/she anticipates a price increase over some time
horizon Tα. In this case, a delayed execution is tantamount to losing part of the
profitability of the trade. Intuitively, the optimal execution schedule should be such
that the horizon T is somewhat shorter than Tα. What is the optimal trading profile
in this case?

We will assume that the predicted price trajectory is given by

p̂(t) = p0 +α(1− e−t/Tα).

The average execution shortfall E[Δ] for the trader (including impact costs and
opportunity costs – see Section 21.3) can be written as

E[Δ] = −
∫ T

0
dtαe−t/Tα j(t)︸������������������︷︷������������������︸

opportunity costs

+
1
2

� T

0
dtdt′ j(t)G(|t− t′|) j(t′)︸���������������������������������︷︷���������������������������������︸

impact costs

+
Qs
2
,︸︷︷︸

spread costs

The optimisation problem can be fully solved in the limit of instantaneous impact
ω→∞, where G(·) becomes a δ-function. Introducing again a Lagrange multiplier
to impose that the executed quantity is Q, the solution reads

Ḡ0 j∗(t) = ζ +αe−t/Tα .

To keep the algebra simple, let us first assume that T � Tα (i.e. the trading horizon
is much smaller than the prediction horizon), and check at the end whether the
assumption is self-consistent. In this case, the optimisation condition becomes:

Ḡ0 j∗(t) = ζ +α(1− t/Tα),
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which, using the constraint that
∫ T

0
dt j∗(t) = Q, finally leads to

j∗(t) =
Q
T
+
α

Ḡ0

(
T − 2t
2Tα

)
. (21.12)

In this solution, trading is initially fast, to benefit as much as possible from the
trading signal. The total cost corresponding to the optimal schedule j∗(t) is readily
computed to be

C (Q,T ) =
αQT
2Tα

+
Ḡ0Q2

T
+
α2T 3

6T 2
αḠ0
+

Qs
2
. (21.13)

For a given Q, maximising this function with respect to T leads to

αQ
2Tα
− Ḡ0Q2

T 2
+

S 2T 2

2T 2
αḠ0
= 0,

which in turn leads to a second-degree equation for X = T 2:

α2 X2 +αḠ0TαQ X − 2T 2
αḠ2

0Q2 = 0⇒ X∗ =
TαḠ0Q
α

.

Therefore, provided T ∗ � Tα,

T ∗ =

√
TαḠ0Q
α

. (21.14)

Interestingly, the optimal execution horizon T ∗ grows as the square-root of the
target volume Q. During this horizon, the price has increased on average by an
amount αT ∗/Tα, which is proportional to

√
Q because of the realisation of the

trader’s signal. This is essentially the argument put forth by Gabaix et al. to explain
the square-root impact law:9 in their picture, the square-root law is not an intrinsic
property of the latent liquidity, as we argued in Chapters 18 and 19, but rather
emerges from the fact that trades are initiated by informed investors who use
knowledge of how much the price is going to move in the future to optimise their
trading schedule. We are again back to our discussion on the origin of impact from
Section 11.1! As discussed in Section 12.5, this scenario would not explain why
the square-root impact law also holds with Q replaced by q(t) for all intermediate
times t ∈ [0,T ].

Plugging Equation (21.14) into Equation (21.13) yields the optimal cost
corresponding to T = T ∗:

C (Q,T ∗) =
5
3

√
Ḡ0α

Tα
Q3/2.

9 Gabaix, X., Gopikrishnan, P., Plerou, V., & Stanley, H. E. (2003). A theory of power-law distributions in
financial market fluctuations. Nature, 423, 267–270.
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Throughout this analysis, we have assumed Q to be fixed at the outset of trading.
The optimal metaorder size Q∗ that results from a global cost-benefit optimisation
is obtained as

P&L ≈ (p̂∞ − p0)Q−C (Q,T ∗)⇒ Q∗ =
4αTα
Ḡ0

.

Hence, the optimal quantity depends linearly on the information α, as in the Kyle
model (see Chapter 15). Plugging this Q∗ back into the result for T ∗ finally leads
to

T ∗ =
2
5

Tα,

which shows that our calculation is only approximately correct in that case (since
it assumes that T ∗ � Tα) but the main message is captured correctly.

21.2.4 Optimal Scheduling with a Non-linear Propagator
Until now, we have used the linear propagator model to determine the optimal
execution schedule. This model is adequate when the trading rate is small. For larger
trading rates, however, non-linear effects play a role. In Chapter 19, we discussed
how the linear propagator framework can be extended to describe the dynamics of
the underlying (latent) liquidity. In the presence of an additional metaorder with
trading intensity j(t), the self-consistent equation of motion of the price is given by
Equation (19.7), which boils down to the propagator model with β= 1/2 when j(t) is
small.

In the opposite limit, where large j(t) is large, one can derive the following
differential equation for the price:10

x(t) |ẋ(t)| ≈ j(t)
L +

D
L

[
3ẍ(t) j(t)

ẏ3(t)
− 2 j̇(t)

ẏ2(t)

]
,

≈ j(t)
L +D

[
2 j̇(t)Q(t)

j2(t)
− 3

]
,

where x(t) = p(t)− pF (see Chapter 18). When j(t) has a constant sign, this equation
can be integrated, and leads to the following final result for the execution shortfall:

E[Δ] = E

[∫ t

0
dt′ j(t′)x(t′)

]
=

1
3

√
2LQ3

[
1− 3DLT

2Q

]
+O(T 2).

The remarkable result here is that j(t) has disappeared: the execution shortfall is, in
the large-intensity limit, completely independent of the execution schedule! In this
limit, the optimal trading problem is dominated by sub-leading effects such as the
finite trading speed and finite deposition and cancellation rates. This is a somewhat
counter-intuitive result of the non-linear propagator framework, Equation (19.7),
which suggests that the dependence of impact costs on the execution schedule could
be weaker than naively anticipated.

10 For details, see Donier, J., Bonart, J., Mastromatteo, I., & Bouchaud, J. P. (2015). A fully consistent, minimal
model for non-linear market impact. Quantitative Finance, 15(7), 1109–1121.
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21.3 Market Orders or Limit Orders?

21.3.1 Adverse Selection and Opportunity Costs

It is one thing to decide on a theoretical execution schedule, but it is quite another
to actually send orders to the market. When doing so, another major conundrum
appears: whether to use market orders or limit orders.

Sending market orders ensures immediate execution, but incurs a cost equal to
half the instantaneous bid–ask spread. It also signals to the rest of the market that
there is an impatient buyer or seller out there. This leakage of information will
most likely degrade the condition of future orders.

Sending limit orders avoids paying half the spread, but suffers from two
predicaments.

The first predicament is what we will call (slightly abusively) opportunity
cost. Consider a buyer sending a limit order at the best bid. If the buyer’s limit
order is executed very soon after its arrival, then he/she has saved paying half the
spread. However, if the price starts drifting upwards before the buyer’s limit order
is executed, then he/she has lost the opportunity to buy the asset at the old price.
If the buyer still intends to buy at the end of the day (say), he/she will have to pay
a higher price. There is therefore an opportunity cost associated with not having
traded.

The second predicament is adverse selection (see Chapter 16). Consider again
the same buyer, who sends a limit order at the best bid. Imagine now that the buy
limit order is matched by an informed sell market order that correctly anticipates
a short-term drop in price. Had the buyer also been informed, he/she would have
cancelled the limit order and resubmitted it later (maybe even as a market order)
to benefit from the lower price.

The arguments on the profitability of market-making strategies, as we put forth
in Chapters 16 and 17, already suggest that market orders and limit orders are
roughly equivalent from the point of view of execution. This might not be true
under certain market conditions or for certain configurations of the LOB, but must
be true on average. Otherwise, if (say) market orders were more favourable than
limit orders, their arrival rate would increase and the arrival rate of limit orders
would decrease, opening the spread st and making market orders less favourable
(and vice-versa for limit orders).

21.3.2 A Martingale Argument

It is interesting to detail the argument for why limit orders do not allow traders to
buy cheap, as one might naively think. While Chapters 16 and 17 have detailed the
argument from a market-maker’s point of view, we will now adopt the investor’s
point of view, and therefore include the possibility of submitting limit orders at
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any price, and also impose the condition that the order must be executed, one way
or another, before the end of the time horizon T .11

Suppose that a trader has no particular information about the future price path
between now (t= 0) and the time by which the trade must be executed (t=T ). Here,
we assume that T is a short time scale, say a day or less, such that any long-term
drift or interest rate can be neglected. Mathematically, given the information at
hand F0, the expectation of the price change pT − p0 is zero, i.e. the price is a
martingale

E
[
pT − p0|F0

]
= 0. (21.15)

Assume now that the trader decides to submit a buy limit order at a distance d
below the initial mid-price. For now, assume also that the volume of the limit
order is sufficiently small that its impact on the price trajectory is negligible (we
address the case with larger order sizes in Section 21.3.4). One of the following
two situations must occur:

• At some intermediate time t ∈ (0,T ) the traded price pt is such that pt ≤ p0 − d.
When this happens, we deem the order to have been executed, irrespective of its
place in the order queue (this assumption clearly fails for large-tick assets; see
Section 21.4).

• The traded price never satisfies pt ≤ p0−d for any t ∈ (0,T ), so the limit order is
still unexecuted at time T . In this case, we assume that the trader must then use
a market order that is executed at price pT .

If the price process pt is a martingale, then the expectation of pT conditional on
execution at price p0 − d is given by

E
[
pT |exec.

]
= E

[
pT |p(exec.) = p0 − d

]
= p0 − d. (21.16)

This execution occurs with probability φexec.. With probability 1 − φexec., the
order is not executed, and the mid-price terminates on average at E

[
pT |exec.

]
.

Decomposing Equation (21.15) into the two scenarios yields:

(1−φexec.)E[pT |exec.]+φexec.E
[
pT |exec.

]
= p0,

⇒ (1−φexec.)E[pT − p0|exec.] = φexec.d, (21.17)

where we have used Equation (21.16).
The average execution shortfall (or slippage cost) E[Δ](d) of a buy limit order

placed at distance d below the initial mid-price is given by

E[Δ](d) = −φexec.d+ (1−φexec.)E[pT − p0|exec.]︸�����������������������������︷︷�����������������������������︸
opportunity cost

,

11 As will become apparent, this is actually just another way of looking at the same problem as we did for
market-makers.
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where the second term is the cost of not having traded until T . Using
Equation (21.17), one then concludes that:12

E[Δ](d) = −φexec.d+φexec.d = 0.

Importantly, due to the martingale property of the price, the potential gain due to
an execution at a favourable price is exactly compensated by the adverse price
move in the case where the order was not executed, independently of the distance
d where the limit order is placed. The attractiveness of limit orders, which may
appear to allow one to execute at a cheaper price, is therefore an optical illusion –
unless one has some information about future price moves.

21.3.3 Trends and Mean-Reversion

This discussion can also be extended to the case where the mid-price is trending or
mean-reverting. Assume that the mid-price started at p0 and has reached the level
p0 −d. If the price is trending, then it is likely to continue going down; if the price
is mean-reverting, then it is likely to go back up. Therefore:

E
[
pT |exec.

]
= p0 − d− d× ρ,

where ρ is a measure of the returns autocorrelation, with ρ > 0 for trending returns
and ρ < 0 for mean-reverting returns. Extending the calculation in the previous
section, the average cost of a limit order is given by

E[Δ](d,ρ) = φexec.dρ. (21.18)

Equation (21.18) reveals an interesting rule-of-thumb: when considering the prof-
itability of limit orders, trending is detrimental and mean-reversion is favourable.
We have already reached this conclusion in the context of market-making (see
Section 17.1). This makes a lot of sense: market-making should be easy when the
price mean reverts, but is difficult when trends are present. From the point of view
of a market-maker, trending implies adverse selection.

21.3.4 Larger Order Sizes

So far in this section, we have considered only limit orders whose size is so small
that impact effects can be neglected. In reality, however, the presence of an extra
buy limit order at distance d from the initial price will change the trajectories of

12 This is exactly the content of the so-called optional stopping theorem for martingales: if we define the stopping
time t∗ = min(τ,T ), where t∗ = τ < T corresponds to the limit order being executed before T and t∗ = T < τ
corresponds to a market order execution at time T , then the theorem stipulates that E[p∗t ] = p0, meaning that
the expected execution price is exactly p0. In the absence of a signal on the price, this is in fact a property
shared by all (bounded) investment strategies.
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the future price and, all else being equal, shift the expected price move to positive
territories. Hence, we generalise Equation (21.15) as

E
[
pT − p0|F0

]
:= ILO(d), (21.19)

where ILO(d) > 0 is (by definition) the impact at time T of the limit order.
For simplicity, we assume that once executed, the price process is a martingale,

such that Equation (21.16) holds. The whole argument of Section 21.3.2 can be
repeated, finally leading to

E[Δ](d) = ILO(d).

The average cost of a limit order, including opportunity costs, is now positive
and equal to its own impact. Therefore, we again reach the conclusion that limit
orders can only be profitable when some predictive signal on future price moves is
available. In reality, even non-executed limit orders do indeed impact prices (and,
by the same token, change their probability of execution).

21.4 Should I Stay or Should I Go?

So far in this chapter, we have completely disregarded the effects of price
discretisation and queue priority. This is clearly inadequate for large-tick assets,
for which the limit order queues at the best quotes are typically very long.
For such assets, one cannot assume that a given limit order is always executed
as soon as the (transaction) price pt coincides with its price. For the reason
explained in Equation (21.18), limit orders with high priority should benefit from
short-term mean-reversion (or “bid–ask bounce”), while limit orders with low
priority will suffer from the adverse selection of sweeping market orders MO1 (see
Section 10.2). One therefore expects that a limit order’s queue position determines
whether it is likely to be profitable or should be cancelled.

In this section, we introduce and study a simplified framework to discuss this
question. We consider the problem from the perspective of a trader who seeks to
maximise the expected gain G(h,V) earned by a limit order with unit size υ0 = 1
and with position h in a limit order queue of size V (h is the “height” in the queue).
We assume that the trade is for a large-tick asset, such that the spread is almost
always equal to ϑ = 1 tick. We assume that the trader has an outstanding limit
order at the bid, and that he/she leaves this limit order in the queue until either it is
matched by an incoming market order or the ask-queue depletes to 0, in which case
we assume that the trader cancels the limit order and immediately resubmits a new
limit order in the incipient bid-queue one tick higher. We assume that the trader
will not cancel the limit order at any time before one of these two events happens,
such that there is no possible optimisation over more complex cancel-and-replace
strategies.
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To keep the modelling framework as simple as possible, we will make the
following assumptions:

• All limit orders have a fixed volume, which we normalise to υ0 = 1, and arrive
with a rate λ(V) that depends on the total volume of limit orders in the queue.

• Each existing limit order is cancelled at a rate ν(h,V), where h ∈ [0,V) is the total
volume of limit orders ahead of the given order. In this way, the cancellation rate
of a given order depends on both the total queue length and the order’s position
in the queue.

• Market orders with size υ arrive with rate μ(υ|V), which is conditional on the
queue size V .

• All event arrival rates are independent of the opposite queue volume.

Consider observing this system at some time step t. The set of possible events that
could occur at the next time step are:13

(i) A new limit order arrives in the same queue as the trader’s limit order. This
new arrival will increase the size of the queue, but will not change the value
of h for the trader’s limit order.

(ii) A cancellation occurs ahead of the trader’s limit order, thereby improving its
position by 1 and decreasing the queue size by 1.

(iii) A cancellation occurs behind the trader’s limit order, leaving its position
unchanged but decreasing the queue size by 1.

(iv) A market order with volume υ < h arrives. This improves the queue position
of the trader’s order and decreases the total size of the queue.

(v) A market order with volume υ ≥ h arrives. This executes the limit order. In
this case, the gain or loss experienced by the limit order owner comes from the
balance between adverse selection and the value of s/2+�, where� denotes
any fee associated with the matching and s is the bid–ask spread, which we
assume in the present case to be equal to 1 tick (because we are considering a
large-tick asset).

(vi) The queue at the opposite-size best quote depletes to zero, leading to an
adverse price move of one tick. In this case, the trader experiences a loss
(due to the opportunity cost) equal to C , which is on the order of a tick.

The expected ex-post gain G(h,V) of the trader is given by the weighted sum of
all these possibilities, as a recursion relation:

13 We do not include events such as a new limit order arriving at the opposite-side best queue, which are irrelevant
for our problem in the present formulation.
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G(h,V) = λ(V)G(h,V + 1)+
h−1∑
y=1

ν(y,V)G(h− 1,V − 1)

+

V∑
y=h+1

ν(y,V)G(h,V − 1)+
h−1∑
q=1

μ(υ|V)G(h−υ,V −υ)

+

∞∑
υ=h

μ(υ|V)

[
ϑ

2
+�−R∞(υ,V)

]
−γC , (21.20)

where γ denotes the probability that the opposite-side queue depletes14 and
R∞(υ,V) is the permanent impact of a market order of size υ impinging on a queue
of size V . Note that these events exhaust all possibilities, such that the rates obey
the following normalisation condition:

λ(V)+
∑
y�h

ν(y,V)+
∞∑
υ=1

μ(υ|V)+γ = 1. (21.21)

We skip the term y = h in the first summation because we have assumed that the
trader will not cancel his/her order.

Studying this model in full generality is difficult. To make analytical progress,
we therefore introduce the following additional assumptions:

• The rate of limit order arrivals is constant and independent of the queue size V ,
such that λ(V) = λ.

• Cancellations occur only at the tail of the queue, with a rate ν that is independent
of the queue size V , such that ν(h,V) = νδh,V .

• Market orders arrive at a constant rate μ, with a size υ that is either equal to
υ0 = 1 (with probability 1−φ) or υ = V (with probability φ), such that

μ(υ|V) = μ
[
(1−φ)δυ,1 +φδυ,V

]
.

In other words, there is a fixed probability φ for a price-changing market order
MO1.

• The impact of a market order is independent of V and depends only on whether
or not it changes the price, such that

R∞(1,V) = R0
∞; R∞(V,V) = R1

∞.

Under these simplifications, the normalisation condition becomes

λ+ ν+μ+γ = 1.

14 In reality, this probability depends on both queue volumes, but we discard these complications here.
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Assuming that υ0 = 1 � h,V means that relative changes in queue lengths are
small and that we can expand Equation (21.20) in much the same way as we did to
derive the Fokker–Planck equation in Section 5.3.4. To first-order, the continuum
limit reads:

(μφ+γ)G(h,V) = (λ− ν)∂VG(h,V)−μ(1−φ) [∂VG(h,V)+ ∂hG(h,V)]

+μφ

[
ϑ

2
+�−R1

∞

]
−γC . (21.22)

The boundary condition at h ↓ 0 expresses the expected gain of a limit order with
highest priority:

G(0,V) =G0 := (1−γ)

[
ϑ

2
+�− (1−φ)R0

∞ −φR1
∞

]
−γC .

For realistic empirical values, G0 is generally positive. The first-order PDE in
Equation (21.22) can be solved by the method of characteristics.15 In the present
case, the characteristics are simply straight trajectories in the plane (h,V), and the
general method boils down to setting G(h,V) := G (h,u) with:

u := V −κh; κ := 1− λ− ν
μ(1−φ)

. (21.23)

For a given, fixed value of u, Equation (21.22) becomes an ordinary differential
equation for G :

G (h,u)+ h∗
dG (h,u)

dh
= χ

[
ϑ

2
+�−R1

∞

]
− (1−χ)C ,

where we have introduced χ := μφ/(μφ+γ) and h∗ := χ(1−φ)/φ.
The solution for G (h,u) then reads:

G (h,u) = G (0,u)e−h/h∗ +

[
χ

(
ϑ

2
+�−R1

∞

)
− (1−χ)C

]
(1− e−h/h∗).

Using the boundary condition G (0,u)=G0, we finally obtain the full expected-gain
profile:

G(h,V) =G0e−h/h∗ +

[
χ

(
ϑ

2
+�−R1

∞

)
− (1−χ)C

]
(1− e−h/h∗).

Despite our strong assumptions, which cause G to no longer depend on V , this
result is interesting because the first term on the right-hand side is generally

15 See, e.g., Courant, R., & Hilbert, D. (1962). Methods of mathematical physics (Vol. 2: Partial differential
equations). Interscience.
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positive (the impact of small market orders R0∞ is smaller than half a tick) while the
second term may be negative (the impact of large market orders R1∞ is larger than
half a tick). Hence there is a critical queue position hc below which limit orders
are on average profitable and beyond which they are costly. One finds:

G(hc,V) = 0⇒ hc ≈ h∗ ln

⎡⎢⎢⎢⎢⎢⎢⎣1+ G0

(1−χ)C −χ
(
ϑ
2 +�−R1∞

) ⎤⎥⎥⎥⎥⎥⎥⎦ . (21.24)

Empirical data suggests that R1∞ � 0.8ϑ and R0∞ � 0.5ϑ (see the top right panel
of Figure 14.2). Table 6.1 gives χ ≈ 0.5, φ ≈ 0.25 and γ < 0.01. On NASDAQ,
the rebate fee for executed limit orders is � ≈ 0.25ϑ.16 Injecting these numbers
into Equation (21.24) leads to G0 ≈ 0.175ϑ, close to the number obtained in
Section 17.3 for the gain of top-priority limit orders.

Since the opportunity cost C can be estimated as one tick minus the gain of
top-priority limit orders (since we have assumed that a limit order is immediately
placed one tick above the previous bid if the ask moves up), one finally obtains hc ≈
0.5υ0. In other words, limit orders must have a very high priority to be profitable,
since queues on large-tick stocks are typically much longer than υ0. Forgetting
the rebate fee, Equation (21.24) would lead to hc < 0, so even top-priority limit
orders would be costly (see Figure 17.1). Of course, if the rebate fee was really
0, impact and order flow would adapt in such a way that top-priority limit orders
would remain (barely) profitable.

The framework we have detailed in this section is admittedly an over-
simplification of a real market. For example, both Va and Vb should be taken into
account when designing real optimal-execution strategies. The strategy that we
have studied is also sub-optimal because we have not considered the situation in
which the given trader can cancel the limit order when signals suggest that the
price is about to move. However, our main aim was to understand the value of
queue priority for large-tick stocks, and Equation (21.24) provides an important
first step in this direction. The results that we have presented illustrate why HFT
firms invest huge sums of money to reduce their latency, as doing so helps them
both to achieve the best possible queue position after deciding to submit a limit
order and to monitor (and react to) a variety of high-frequency indicators that may
protect them against adverse selection. In any case, the results of our calculations
in this section illustrate that just a few years after the heydays of HFT, it has
become very difficult to make substantial profits using simple market-making
strategies.

16 See, e.g., Brogaard, J., Hendershott, T., & Riordan, R. (2014). High-frequency trading and price discovery.
Review of Financial Studies, 27(8), 2267–2306.
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21.5 Conclusion

Making savvy trading decisions is notoriously hard. As we have discussed in this
chapter, making good executions is no less difficult. Traders seeking to execute
large metaorders must consider a wide variety of important decisions, including
how to slice-and-dice their metaorder, which venue or platform to trade on,
whether to use limit orders or market orders, and (in the case of large-tick assets)
how to assess the value of queue position.

Addressing these issues requires the study of mathematical problems that are
abundant in recent literature. These problems are complex, and their solutions
often rely heavily on the quality of the modelling assumptions used to formulate
them. In some cases, solutions are only available via simulation, where one
numerically replays the real order flow with some extra orders that must be
executed. However, one should keep in mind that those extra orders were not in
the historical flow. If they were, they would have generated some reaction from
the market, leading to some impact that is absent from the data, making such
back-testing a bit dodgy. The impact of these phantom trades is often comparable
in magnitude to the effects one attempts to study, for example the performance
of an execution strategy. One therefore needs some adequate modelling, using for
example accurate models of queue dynamics (as in Chapter 7) or a multi-event
propagator model (as in Chapter 14) where the impact of past events is described
explicitly.

As a result of competition, markets are very close to being an even playing
field for liquidity providers and liquidity takers. Although they have different risk
profiles, market orders and typical limit orders are roughly equivalent in terms of
their costs. This ties up with the conclusions of Chapter 17: attempting to earn the
spread using limit orders is very difficult in today’s highly competitive markets.
For large-tick stocks, limit orders are only profitable if they have high priority.
Obtaining this high priority is a difficult task, and usually requires, among other
things, low-latency technology.

Take-Home Messages

(i) Traders experience direct and indirect trading costs. Direct costs
include market access fees, brokerage fees, transaction taxes, and liq-
uidity fees. Indirect costs are costs that are determined endogenously
by the state of supply and demand, such as the bid–ask spread and
impact costs.

(ii) Because of indirect costs, a good approach to execution can make the
difference between a profitable and a losing strategy.
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(iii) Investors typically break their execution pipeline into three stages:
the macroscopic level (deciding on a time horizon and a volume
to execute), the mesoscopic level (deciding on the scheduling of
these orders within the defined horizon) and the microscopic level
(choosing which order to send to the market, on which venue and
whether as a limit order or a market order).

(iv) Optimising at the macro- and meso-scales requires a good under-
standing of price impact. Propagator models provide a convenient
framework for tractable optimal execution design.

(v) Optimising at the micro-scale requires a good model of LOB
dynamics, and especially of the best queue dynamics. When it comes
to choosing between limit orders or market orders, investors face
the same problem as market-makers. Sending market orders ensures
immediate execution, but incurs a cost equal to half the instantaneous
bid–ask spread and creates information leakage. Sending limit
orders incurs uncertainty, opportunity costs and exposure to adverse
selection. In terms of cost, the two types of orders are thus roughly
equivalent.

(vi) Optimal execution has remained an active research topic for several
decades. This sustained research activity has led to the growth of a
vast literature on this topic.
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Schied, A., & Schöneborn, T. (2009). Risk aversion and the dynamics of optimal

liquidation strategies in illiquid markets. Finance and Stochastics, 13(2), 181–204.
Alfonsi, A., Fruth, A., & Schied, A. (2010). Optimal execution strategies in limit

order books with general shape functions. Quantitative Finance, 10(2), 143–157.
Kharroubi, I., & Pham, H. (2010). Optimal portfolio liquidation with execution cost

and risk. SIAM Journal on Financial Mathematics, 1(1), 897–931.
Gatheral, J., & Schied, A. (2011). Optimal trade execution under geometric Brownian

motion in the Almgren and Chriss framework. International Journal of Theoretical
and Applied Finance, 14(03), 353–368.

Forsyth, P. A., Kennedy, J. S., Tse, S. T., & Windcliff, H. (2012). Optimal trade
execution: A mean quadratic variation approach. Journal of Economic Dynamics
and Control, 36(12), 1971–1991.
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Guéant, O., & Lehalle, C. A. (2015). General intensity shapes in optimal liquidation.
Mathematical Finance, 25(3), 457–495.

Alfonsi, A., & Blanc, P. (2016). Dynamic optimal execution in a mixed-market-impact
Hawkes price model. Finance and Stochastics, 20(1), 183–218.

Cartea, A., & Jaimungal, S. (2016). Incorporating order-flow into optimal execution.
Mathematics and Financial Economics, 10(3), 339–364.
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Market Fairness and Stability

When men are in close touch with each other, they no longer decide randomly and
independently of each other, they each react to the others. Multiple causes come
into play which trouble them and pull them from side to side, but there is one
thing that these influences cannot destroy and that is their tendency to behave like
Panurges sheep.

(Henri Poincaré, Comments on Bachelier’s thesis)

As is stated in any book on market microstructure (including the present one!),
markets must be organised such that trading is fair and orderly. This means that
markets should make the best efforts to be an even playing field for all market
participants, and should operate such that prices are as stable as possible. As
we emphasised in Chapter 1, market stability relies heavily on the existence of
liquidity providers, who efficiently buffer instantaneous fluctuations in supply
and demand, and smooth out the trading process. It seems reasonable that these
liquidity providers should receive some reward for stabilising markets, since by
doing so they expose themselves to the risk of extreme adverse price moves.
However, rewarding these liquidity providers too heavily is in direct conflict
with the requirement that markets are fair. In summary, if bid–ask spreads are
too small, then liquidity providers are not sufficiently incentivised, so liquidity
becomes fragile; if bid–ask spreads are too wide, then the costs of trading become
unacceptable for other investors.

The rise of electronic markets with competing venues and platforms is an elegant
way to solve this dual problem, through the usual argument of competition. In a
situation where all market participants can act either as liquidity providers or as
liquidity takers (depending on their preferences and on market conditions), the
burden of providing liquidity is shared, and bid–ask spreads should settle around
fair values, as dictated by the market. As we saw in Chapter 17, this indeed seems
to be the case in most modern liquid markets, such as major stock markets, futures
and FX markets, in which the average bid–ask spread and the costs associated with

406
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adverse selection offset each other almost exactly. Note that this was not the case
in the past: bid–ask spreads have decreased significantly during the last 30 years,
from an average of 60 basis points for US stocks throughout the period 1900–1980,
down to only a few basis points today (at least when the tick size is not too
large).1

From this point of view, modern continuous-time double-auction markets have
greatly decreased the economic rents available to liquidity providers. Trading costs
– at least when measured using the bid–ask spread – have gone down. But how
has the corresponding “collectivisation” of adverse selection influenced market
stability? Has the advent of electronic markets also made markets more stable –
or has the decrease in economic rents available to liquidity providers made them
more fragile?

Perhaps surprisingly, empirical evidence suggests that markets are neither
significantly more nor significantly less stable than they have ever been, at
least seen with a long view. For example, despite major evolutions in market
microstructure and the rise of algorithmic, high-frequency trading, the distribution
of daily returns (including the tail region; see Section 2.2.1) has barely changed in
the last century. To illustrate this point, Figure 22.1 shows the probability that any
given stock in the S&P 500 has an absolute daily return |r| larger than ten times the
average daily volatility in the given year. It is hard to detect any significant trend in
the number of market jumps between 1992 and the 2013 – i.e. between a pre-HFT
era and the present HFT era. Other measures of market (in-)stability, such as the
Hawkes feedback parameter g (see Chapter 9), also show remarkable stability over
that period.2

This finding clearly runs contrary to widespread anecdotal evidence. In recent
years, major financial markets have experienced several “flash crashes”, which
have received a great deal of attention from the media, who typically point the
finger at HFT. The S&P500 flash crash of 6 May 2010 is still fresh in our memory –
but who remembers that a nearly identical event with a similar speed and amplitude
occurred on 28 May 1962, long before algorithms and HFT existed? While it is
true that technical glitches and algorithmic bugs are at the origin of some recent
hiccups, the more relevant question is whether the new ecology of markets has
structurally created more instability.

In this discussion, one should bear in mind that the S&P volatility has fluctuated
significantly in the period 1992–2013 (and, more generally, throughout the last
century), with annual volatility ranging from less than 10% in calm periods such
as 1965 or 2005, to more than 60% in crisis periods such as 2008. These volatility

1 See: Jones, C. M. (2002). A century of stock market liquidity and trading costs. https://ssrn.com/abstract=
313681.

2 See: Hardiman, S., Bercot, N., & Bouchaud, J. P. (2013). Critical reflexivity in financial markets: A Hawkes
process analysis. The European Physical Journal B, 86: 442–447.
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Figure 22.1. Empirical probability of a 10-σ price jump on a given day for
any of the stocks in the S&P 500, from 1992 to 2013. We estimate the daily
volatility σ for each stock and each year separately. The horizontal line shows
the full-sample mean 0.027, and the dashed lines at ±0.008 correspond to one
standard deviation (neglecting correlations, which are in fact present and would
lead to wider error-bars). There is no significant change between the pre-HFT era
(before about 2000) and the explosion of HFT (after about 2008). Note that the
average jump probability is compatible with a Student’s-t distribution with a tail
exponent μ between 3 and 4 (see Section 2.2.1).

swings are certainly very large, but it is hard to ascribe them to microstructural
effects or the presence of HFT. It would be absurd to blame HFT for triggering the
2008 Great Recession (not to mention the 1929 Great Depression, which predated
HFT by several decades). The worst one-day drop of the US market in 2008 was
actually less than 10%, compared to more than 20% in 1929 or 1987. Ultimately,
the cause of chronic volatility fluctuations and extreme tail events is still
uncertain.

Why do markets have such a persistent propensity to crash, in spite of many
changes in market microstructure and regulation? One possible explanation is
simply that markets will always be fragile, because such fragility is an unavoidable
consequence of trading itself. An alternative explanation is that we (collectively)
have not yet understood the basic mechanisms that lead to instabilities. If this is
the case, then more efforts in this direction may lead to the design or discovery
of efficient regulation and optimal microstructure design. Our hope is that this
book opens up new ways of thinking about these issues, and highlights the
necessity to develop a multi-scale picture that ties together the high-frequency and
low-frequency dynamics of financial markets.
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22.1 Volatility, Feedback Loops and Instabilities

As we have discussed in Chapters 2 and 20, there is strong evidence to
suggest that many major price changes are self-induced by markets’ amplifying
dynamics rather than due to large shocks affecting fundamental value. In our
view, identifying the precise feedback loops at the origin of extreme events and
power-law tails is one of the major scientific challenges for future research. This
task is of utmost importance not only from a theoretical point of view (why is the
distribution of extreme events so universal?) but also from the point of view of
regulation. Can one change the micro-organisation of markets so as to curb excess
volatility and reduce the number of spurious price jumps, as has been argued by
the proponents of a financial transaction tax (FTT)?

Market efficiency is intimately associated with the idea that markets are stable
(see Section 20.3). In this view, whenever prices deviate from fundamental
values, arbitrageurs are supposed to intervene and correct mispricings. Irrational
behaviour can amplify pricing errors, but “big money” is assumed to be smart
and not prone to irrational bouts. Because the price is supposed to reflect all news
available at a given time, only exogeneous news can trigger large price moves. This
point of view is very common in financial economics and implies there is little we
can do to alleviate large price changes, which merely reflect fundamental changes
in the valuation of assets.

A more pragmatic view is to be agnostic about the rationality of prices, and
to think instead about how and why markets can go awry. After all, as with
any engineering project (even if run by the brightest minds), unpleasant surprises
can occur.3 While it is undeniable that stabilising forces are at play in financial
markets (e.g. more buyers enter the market when prices go down, and more
sellers when prices are high), some impact-driven, destabilising feedback loops
are also clearly present. Whether or not stabilising forces are always sufficient
to keep Black Swans at bay should not remain a question of axioms, but
should rather be answered using empirical evidence. If engineering better market
stability is possible at all, then understanding the nature of these feedback loops
is a prerequisite. In this section, we list some of the impact-driven feedback
loops that are present in financial markets. In a nutshell, these feedback loops
all lead to an acceleration of the market, as buy (respectively, sell) pressure
begets buy (respectively, sell) pressure, while liquidity fails to replenish fast
enough.

3 On this point, recall the economists’ 2009 “Letter to the Queen”, when asked why nobody had anticipated the
2008 crisis: “In summary, Your Majesty, the failure to foresee the . . . crisis and to head it off, while it had many
causes, was principally a failure of the collective imagination of many bright people . . . to understand the risks
to the system as a whole.”
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22.1.1 Trend-Following

Trend-following is a severe problem for the Efficient Market Hypothesis, since
its mechanism is the exact opposite of what should make markets efficient
(i.e. market forces should drive prices back to their fundamental values, not
amplifying mispricings).4 However, provided trades impact prices, it is not difficult
to understand how trends can emerge endogenously from behavioural biases.5

Imagine that a fraction of the market believes that some useful information is
contained in the past behaviour of prices. These investors buy when the price has
gone up and sell when the price has gone down. The impact of these investors’
trades will then mechanically sustain the trend. In this scenario, the only way to
prevent trends from developing is for a sufficiently large fraction of mean-reverting
investors to act against the trend.

While slow trend-following (on time scales of months) generates relatively few
trades, so is unlikely to generate short-term price swings, fast trend-following (on
time scales of minutes to hours) can potentially enter an unstable mode where
trends beget trends. In fact, the way to make profit from a trend is to join in as early
as possible. Market participants who do so cause the trend to accelerate. But for
market-makers, trends are akin to adverse selection (see Section 21.3). Therefore,
local trends put liquidity providers under strain and can destabilise markets, as we
now discuss.

22.1.2 Market-Maker Panic

In Chapter 16, we saw that the Glosten–Milgrom framework predicts that a
market breakdown can occur: when liquidity providers believe that the quantity
of information revealed by trades exceeds some threshold, there is no longer any
value of the bid–ask spread that allows them to break even. Whether real or
perceived, the risk of adverse selection is detrimental to liquidity. This creates a
clear amplification channel that can lead to liquidity crises. As the saying goes:
“liquidity is a coward – it’s never there when you need it”.

To illustrate this point, imagine that the price has recently had a “lucky streak”
of many changes in the same direction – say upwards. This creates anxiety
for liquidity providers, who fear that some information about the future price,
unknown to them, is the underlying reason for the recent trend. The consequence
is an increased reluctance to provide liquidity on the ask side: such liquidity
providers become more likely to cancel their existing limit orders and less likely
to refill the LOB with new limit orders. Statistically, the ask-price is more likely

4 One could argue that trends actually slowly drive prices towards fundamental values. However, this would
mean that information is not quickly reflected in prices, which is problematic for the claim that markets are
informationally efficient.

5 For an explicit model, see, e.g., Wyart, M., & Bouchaud, J. P. (2007). Self-referential behaviour, overreaction
and conventions in financial markets. Journal of Economic Behavior & Organisation, 63(1), 1–24.
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to move up, reinforcing and accelerating the trend. Buyers observe the ask-price
move, and are tempted to execute their orders more rapidly. They tend to cancel
their limit orders on the bid side and send market orders on the ask side instead,
which results in less liquidity on both sides. This self-reinforcing feedback loop
can enter an unstable mode and lead to a crash. In some form or another, this
scenario is probably responsible for the appearance of many price jumps that occur
in the absence of any news – including the infamous flash crash of 6 May 2010 and
the lesser-known flash crash of 28 May 1962.

How might this runaway trajectory be prevented? One possible answer is that
some investors, who were previously waiting on the side-lines, might decide that
the large price swing makes it a bargain to sell, and might thereby provide liquidity
to buffer the price movement. As we argued in Chapter 18, most liquidity is
latent and not present in the LOB. When the speed of the market is such that
this latent liquidity cannot be transmuted into real liquidity sufficiently quickly, a
crash becomes unavoidable. A possible solution is to put in place a circuit breaker
(see Section 22.2), which allows the market to “take a breath”, so that some (slow)
latent liquidity can replenish the LOB and stabilise the price.

22.1.3 Deleveraging Spirals

Stop-loss strategies can also create major destabilising feedback spirals. Suppose
that a trader has decided to sell his/her position if the asset price falls below
a certain price level. This sale could be a voluntary decision by the trader, but
could also be caused by a mandatory margin requirement imposed by a trading
counterparty. If the price hits this threshold, the trader will start selling. The
impact of these sales will push the price down further, possibly triggering more
stop-loss orders from other investors holding similar positions. This is again a
self-reinforcing mechanism that can only be stopped by a sufficient number of
buyers stepping in quickly enough. If prices decline too steeply, these buyers
might actually be deterred from doing so, in which case a crash is all but
inevitable.

Stop-loss strategies are also implicit in option hedging. Consider a put option,
which is an insurance contract that protects an investor against falling prices.
Having sold a put option, the hedging strategy of the insurer amounts to selling
when the price return is negative, potentially leading to the very same feedback
loops described above. This is precisely what happened in October 1987, when
$80 billion of US stocks were insured in this manner (compared to a daily turnover
of just $5 billion). In other words, a mere 5% change in hedge position required
the market to digest roughly 80% of the average daily liquidity, which wrought
havoc for market stability.
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22.1.4 Contagion

Another destabilising mechanism is inter-market contagion. A price-drop for
asset A can create anxiety for liquidity providers on a correlated asset B, which
then itself becomes prone to a large price move, even if the event concerning asset
A is idiosyncratic and only weakly affects the fundamental value of B. Inter-market
contagion again creates potentially unstable feedback loops, because the initial
price-drop for asset A appears to be vindicated by the subsequent price-drop
for asset B. This may reinforce the sell pressure on asset A, and spill over on
other correlated assets as well, leading to a crash of the whole market. Empirical
evidence suggests that this effect was fully at play during the May 2010 flash crash.

Correlated portfolios can also produce a more subtle type of impact-mediated
contagion. If, for whatever reason, an asset manager has to liquidate his/her port-
folio, the impact of the resulting trades will lower the marked-to-market valuation
not only of his/her own portfolio (which might amplify the urge to liquidate),
but also of all similar portfolios held by other asset managers. This cross-asset
deleveraging spiral took place during the “quant crunch” of August 2007. ETF
index-trading also mechanically increases inter-asset correlations.6 The last two
cases are example of so-called crowded trades (or “overlapping portfolios”).

22.2 A Short Review of Micro-Regulatory Tools

Exchanges, trading platforms and regulators all have access to a range of tools to
improve the way markets operate, in terms of both fairness and stability. Some of
these tools concern the rules of trading, others concern fee structures and taxes,
and yet others concern emergency measures that can be taken in crisis situations
to bring markets back on an even keel. We now provide a brief discussion of
some tools and topics that have been the focus of recent attention in the academic
literature, and consider whether these micro-prudential solutions might alleviate
some of the unstable feedback loops discussed in the previous section. As we
will see, the possible consequences of applying many of these mechanisms can
be surprising, such that easy solutions often have detrimental consequences.

22.2.1 Microstructural Rules

Tick Size
As we saw in Chapter 4, larger tick sizes stimulate larger volumes at the best
quotes, lower cancellation rates and have a more stable LOB (small-tick assets

6 Several studies suggest that the rise of algorithmic trading and high-frequency market-making has substantially
increased the cross-correlation between assets, particularly during crisis periods. See, e.g., Gerig, A. (2015).
High-frequency trading synchronizes prices in financial markets. https://ssrn.com/abstract=2173247.
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typically lead to “flickering” liquidity that is much harder for both market
participants and regulators to monitor). However, by making time priority more
important, large tick sizes encourage liquidity providers to post orders early,
thereby increasing their exposure to adverse selection. Furthermore, large spreads
deter uninformed trades, so that the large tick size equilibrium is likely to be
skewed towards informed traders, which can lead to a market breakdown, as
shown in Section 16.1.4. This would go against the initial goal of improving
liquidity!

From the viewpoint of market stability, even stimulating larger quantities at the
best quotes is not necessarily without its drawbacks. As queue priority becomes an
increasingly important consideration, liquidity providers might end up investing
important resources in high-frequency technologies, so as to mitigate the risk of
increased adverse selection by being able to cancel their limit orders quickly when
the situation appears to deteriorate. In this case, apparently large volumes at the
best quotes can be deceptive, because they are likely to evaporate when they are
needed most.

Interestingly, a decrease in the tick size of US stocks in 2000 is generally
believed to have improved liquidity and decreased investors’ trading costs
(although the evidence is not always compelling). In terms of market liquidity and
fairness, the question of whether there exists an optimal tick size remains open.

Priority Rules
As we discussed in Section 3.2.1, different priority mechanisms encourage traders
to behave in different ways. Price–time priority rewards traders for posting limit
orders early, and discourages cancellations (since priority is lost), but also favours
a race to low-latency trading, which many market commentators argue provides an
unfair advantage to wealthy financial institutions with large sums to invest in new
technology. Price–size priority favours large investors who gain priority by placing
large orders, often much larger than their desired trading volume. This leads to
enhanced volumes at the best quotes and possibly to a more resilient liquidity.
But precisely as for large tick sizes, this increases liquidity providers’ exposure to
sweeping market orders and adverse selection. Qualitatively, this leads to a similar
situation where informed traders benefit from high liquidity, but where displayed
volumes can quickly vanish, potentially leading to price jumps.

Order Types
Most platforms offer traders the ability to submit a wide range of different
order types, including iceberg, immediate-or-cancel and fill-or-kill orders (see
Section 3.2.2). Although such orders are typically popular with their users, recent
evidence suggests that some order types might have been at the root of some
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market instabilities. For example, so-called inter-market sweep orders (ISOs)7

have been identified as the major source of ultra-fast flash crashes. Such events
may be regarded more as technical glitches than genuine market instabilities, due
to the additional complexity or even the flawed design of these instruments.

Minimum Resting Time
Some researchers have argued that limit orders should be required to remain active
for some specified minimum time before they can be cancelled. Supporters of this
proposal argue that it would make liquidity more stable. However, one should
again remember that imposing a minimum resting time also increases the risk that
a limit order is picked off by a trader with access to private information about the
likely future value of the asset. Therefore, the introduction of a minimum resting
time would cause the bid–ask spread to widen, to compensate for this increased
level of adverse selection, and would likely discourage market participants from
providing liquidity. The resulting overall impact on liquidity remains unclear.

Speed Bumps
One possible way to reduce the speed advantage of HFT is to introduce artificial
speed bumps within trading platforms. For example, the trading platform IEX
placed a 38-mile coil of optical fibre in front of its trading engine, to induce a
350-microsecond delay for all orders. Although IEX’s market share has increased
since its inception, it is still rather small (a few percent). This suggests that
investors do not really feel ripped off by HFT, contrary to the wild and somewhat
uninformed claim in the general press that markets are “rigged”.8

Discrete Batch Auctions
Instead of allowing trading to occur at any moment in continuous time, some
market commentators have suggested that trades should occur at random auction
times – perhaps one every 100 ms on average. The aim of this approach is to
mitigate the opportunities for cross-market arbitrage by HFT. From the point of
view of market stability, we concluded in Chapter 18 that the amount of liquidity
in the immediate vicinity of the traded price should increase when auctions occur
in discrete time. However, this improvement only concerns very small volumes,
less than the average volume traded in the market during the inter-auction time. To

7 See Golub, A., Keane, J., & Poon, S. H. (2012). High-frequency trading and mini flash crashes.
arXiv:1211.6667, where ISO orders, specific to the US market, are described as follows: “An ISO is a limit
order designated for quick and automatic execution in a specific market center and can be executed at the target
market even when another market center is publishing a better quotation. Without the need to search for the best
quotation during their execution, such orders can possibly achieve faster execution than regular market orders,
even though both types of orders demand liquidity and move [the] price.”

8 For two opposite viewpoints, see Lewis, M. (2014). Flash boys: Cracking the money code. Allen Lane; and
Asness, C. S. (2014). My top 10 peeves. Financial Analysts Journal, 70(1), 22–30. As far as we are concerned,
we believe that modern electronic markets with HFT are much less rigged now than they have been in the past.
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have a substantial effect and reduce the impact of – say – buying 1% of the average
daily volume, the inter-auction time would need to be of the order of minutes,
not milliseconds. Therefore, trying to improve market stability through frequent
batch auctions is only really useful if the frequency of market clearing is very low
(perhaps once every hour or so). Clearing markets so infrequently entails many
other problems, such as hampering the diffusion of information across markets and
the need to synchronise these auctions across different markets – not to mention the
possible development of secondary markets in which transactions would take place
between these batch auctions, rendering the whole exercise of enforcing infrequent
batch auctions to be redundant.

Circuit Breakers
Some platforms implement mechanisms designed to halt trading if prices change
too quickly. In this way, circuit breakers aim to provide latent liquidity with the
opportunity to become active. The NYSE circuit breaker has several levels, which
are triggered if the price of an asset falls a given percentage below the average
closing price during the previous months. If a 10% fall occurs, then the circuit
breaker triggers a temporary halt. This halt lasts for one hour if it occurs before
14:00 or for 30 minutes if it occurs between 14:00 and 14:30 (no halt occurs if the
circuit breaker triggers after 14:30). If a 30% fall occurs, then the circuit breaker
halts trading for the rest of the day. These rules raise several questions: it is not
clear whether they are in any sense optimal, nor is it clear that they do not create
unintended consequences. For example, if traders fear that the circuit breaker is
about to trigger, and that they will therefore be denied access to liquidity, they may
create a sell pressure in an attempt to trade before the price falls further, which only
accelerates the process. Obviously, circuit breakers can only work if there is some
slow liquidity about to materialise (or if some rogue algorithm is unplugged). One
way or the other, this proved to be true for the flash crash of 6 May 2010, since the
price indeed bounced back up as soon as the trading halt was over.

22.2.2 Fees and Taxes

Maker/Taker Fees
To encourage liquidity provision and slow down liquidity consumption, many
platforms charge a fee for market orders and/or offer a rebate for executed limit
orders. On some platforms, these fees are inverted, such that liquidity providers
pay the fee and liquidity takers receive the rebate. In either case, maker/taker fees
are tantamount to changing the size of the bid–ask spread, as they effectively allow
trades to occur at fractional tick values (because limit orders are effectively closer
or farther away from the mid-price, depending on the fee structure). It is therefore
likely that such maker/taker fees have an effect that is qualitatively similar to
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modifying the tick size, in addition to introducing small asymmetries between
exchange platforms that so-called “smart order routers” (SOR) try to arbitrage.
In practice, the effect of static maker/taker fees on liquidity must be rather small,
except if behavioural biases play a large role.

Dynamical Maker/Taker Fees
Another idea worth investigating is to make maker/taker fees explicitly depend on
market conditions, such as the current size of the bid–ask spread or the amplitude
of recent price moves, in such a way as to promote liquidity provision more
strongly when it is needed most (e.g. by strongly increasing the maker fees when
the spread is large). These dynamical fees would not only concern new market
and limit orders, but also pre-existing limit orders, in an attempt to reduce the
cancellation rate. These rules would be endogenised by HFT/execution algorithms,
and perhaps prevent self-induced short-term liquidity droughts. However, the way
market participants adapt to such new rules is crucial for the success of a dynamical
control of markets.

Financial Transaction Taxes (FTT)
Many market commentators have advocated the introduction of an FTT (or Tobin
Tax9) as a way to “throw sand” in the wheels of financial markets (as Tobin once
said) and deter short-term trading. In most proposals, the magnitude of the FTT
is envisaged to be substantial (perhaps ≈ 10–20 basis points), and certainly much
larger than the maker/taker fee. Supporters of this proposal claim that such a tax
would reduce trading volumes, and hence reduce any volatility directly induced by
trading.

However, this idea faces an important problem: if this tax is applied to
market-makers (who by design trade extremely frequently), they might change
the way that they provide liquidity. Therefore, the bid–ask spread will most
likely increase to compensate for the tax. Since liquidity takers would also
pay the tax, only highly informed agents would consider trading, potentially
leading to a market breakdown, as suggested by the Glosten–Milgrom model (see
Section 16.1.4). Clearly, this would fail to reduce volatility by any significant
margin.

Several pieces of empirical evidence do not fit well with the seemingly
compelling “sand in the wheels” argument. By this logic, reducing transaction
costs (or reducing the bid–ask spread) should lead to an increase in volatility.
Empirical evidence suggests that if anything, the opposite happens.

In recent years, there has been a huge decrease in bid–ask spreads for many
stocks. In the period 1900–1980, it was common for stocks to have an average

9 J. M. Keynes, and much later J. Tobin, were the first to propose a proportional tax, paid on all transactions.
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bid–ask spread of around 60 basis points; today, these same stocks typically have
a bid–ask spread of just a few basis points. This enormous change has not led to an
explosion in volatility, as arguments in favour of an FTT would suggest. Moreover,
several natural experiments, such as the introduction of an FTT in Sweden or the
abrupt change of tick size that occurs after a stock split or when the price of some
stocks crosses a specified threshold (like 10, 50 and 100 euros on the Paris Bourse)
all suggest that volatility tends to increase when trading costs or the bid–ask spread
increase. A cross-sectional analysis, comparing volatility to relative tick size, also
points in the same direction.

The mechanism behind this effect is not well understood. This puzzle illustrates
the difficulty in devising adequate regulation that avoids unintended consequences.
From what we have learned throughout this book, we may put forward the
following hypothesis. We have seen that the asymptotic response function for
price-changing events is roughly equal to the bid–ask spread, particularly for
large-tick stocks (see Figures 13.1 and 16.4). This suggests that the market
interprets – rightly or wrongly – any price-changing trade as containing an amount
of information proportional to the bid–ask spread itself.10 By increasing the value
of the elementary price movement, a larger bid–ask spread could bias investors’
interpretations of microscopic price changes, which could then propagate to longer
time horizons and contribute to a larger volatility. Of course, the relationship
between spread and volatility is more complex than this simple picture (see
Section 16.3 and Figure 16.6), so the above hypothesis clearly needs more scrutiny,
but it provides a simple illustration of the important effects.

In summary, FTT is a prime example of a seemingly good idea that could
actually lead to major detrimental effects.

22.2.3 Discussion

In view of the universality of market dynamics across different time periods,
instruments and microstructures, it is not obvious that any of the above proposals
can prevent markets from undergoing their frequent “liquidity tantrums”. However,
short of a deep understanding of the mechanisms that lead to such instabilities, one
cannot exclude the possibility of some smart micro-regulation that would improve
the way markets operate.

As this section has made clear, most of the effects of new rules are more subtle
than what might be initially anticipated, because markets always adapt to any
new, necessarily imperfect, regulation. For any new rule, one effect is certain:

10 As we have mentioned in previous chapters, this seems to be vindicated by the fact that all trades,
independently of their motivation, have roughly the same average short-term impact on prices; see Tóth, B.,
Eisler, Z., & Bouchaud, J. P. (2017). The short-term price impact of trades is universal. https://ssrn.com/
abstract=2924029.
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to make some old profit opportunities disappear in favour of new ones. Because
competition is likely to have eroded the profitability of old opportunities, it might
even occur that the new opportunities are even more profitable – at least during
an initial transition period. It may take time for traders to fully understand new
regulations, and for markets to reach competitive equilibrium.

22.3 Conclusion: In Prices We Trust?

One of the most important messages of this book is that impact transforms trades
into price changes. This mechanism is necessary for prices to reflect information,
but it is also a transmission belt for feedback loops.

Under normal market conditions, these feedback loops are buffered by liquidity
providers, who must constantly balance the rewards provided by the bid–ask
spread with the risk of being adversely selected by informed traders. Electronic
markets have made it possible to spread this risk of adverse selection over a
large number of agents, who compete to provide liquidity (instead of all the
burden falling on a single market-maker, as happened in the past). However, when
liquidity providers come to believe – rightly or wrongly – that the order flow is
toxic, in the sense that the adverse selection risk is large, they tend to withdraw
from the market. This causes liquidity to vanish (see Section 16.1.4).

Empirical evidence suggests that the “new” market-makers in modern financial
markets all react in a similar way to risk indicators, such as short-term volatility,
short-term activity bursts and short-term trends. This implies that the apparent
diversification benefit of having many different liquidity providers is absent at the
times when it is needed most. The reason for this relative failure is that fierce
competition has driven bid–ask spreads down to levels where liquidity provision
is only marginally profitable, so liquidity providers in modern markets are also
extremely sensitive to risk.

Optimal situations are often fragile situations. How should liquidity provision be
rewarded such that markets are maximally resilient while ensuring an even playing
field? In our view, this remains an open question. The fundamental paradox is that
a market is like a pyramid standing on its tip: the current price is precisely where
supply and demand are at their minimum. In the stylised model of Chapters 18
and 19, the marginal supply and demand curves actually vanish at the traded
price, so the “price” only makes sense for infinitesimally small transactions.
As soon as the traded quantity becomes substantial, impact is of paramount
importance.

A direct consequence of this observation is that instantaneous market prices are
not a suitable benchmark against which to assess the value of large portfolios, as is
assumed by mark-to-market accounting rules. At the very least, a haircut should
be applied to account for the impact of liquidating a position. Using the square-root
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law of Chapter 12, the impact-corrected value of a 1% holding of the market
capitalisation of a stock with 2% daily volatility should be ∼1.5% below the market
price! Therefore, using the market price to evaluate the value of a large portfolio
is at best fallacious, and at worst dangerous, because doing so can contribute to
deleveraging spirals and market instabilities.11 The use of instantaneous, fragile
prices as a reference for important transactions also makes markets vulnerable to
a wide variety of manipulation strategies, such as pushing the daily closing price
above some level to trigger a contingent claim.

Prices are fleeting quantities, hyper-sensitive to fluctuations in order flow and
prone to endogenous crashes. So why do we put such blind faith in them?
The belief that prices are faithful estimates of the value of assets, portfolios
and firms has dominated the study of financial markets for decades. Despite
widespread adoption, this approach has many unfortunate consequences, including
stifling both macro-prudential research and the microstructural issues that we have
addressed throughout this book.

Perhaps it is time for a better paradigm.
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Appendix

A.1 Description of the NASDAQ Data

Throughout the book, our empirical calculations are based on historical data that
describes the LOB dynamics during the whole year 2015 for 120 liquid stocks
traded on NASDAQ. On the NASDAQ platform, each stock is traded in a separate
LOB with a tick size of ϑ = $0.01. The platform enables traders to submit both
visible and hidden limit orders. Visible limit orders obey standard price–time
priority, while hidden limit orders have lower priority than all visible limit orders
at the same price. The platform also allows traders to submit mid-price-pegged
limit orders. These orders are hidden, but when executed, they appear with a price
equal to the national mid-price (i.e. the mid-price calculated from the national best
bid and offer) at their time of execution. Therefore, although the tick size is $0.01,
some orders are executed at a price ending with $0.005.

The data that we study originates from the LOBSTER database (see below),
which lists every market order arrival, limit order arrival, and cancellation that
occurs on the NASDAQ platform during 09:30–16:00 each trading day. Trading
does not occur on weekends or public holidays, so we exclude these days from our
analysis. When we calculate daily traded volumes or intra-day patterns, we include
all activity during the full trading day. In all other cases, we exclude market activity
during the first and last hour of each trading day, to remove any abnormal trading
behaviour that can occur shortly after the opening auction or shortly before the
closing auction.

For each stock and each trading day, the LOBSTER data consists of two
different files:

• The message file lists every market order arrival, limit order arrival and
cancellation that occurs. The LOBSTER data does not describe hidden limit
order arrivals, but it does provide some details whenever a market order matches
to a hidden limit order (see discussion below).
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• The orderbook file lists the state of the LOB (i.e. the total volume of buy or
sell orders at each price). The file contains a new entry for each line in the
message file, to describe the market state immediately after the corresponding
event occurs.

Both files are time-stamped to the nanosecond. Whenever a market order
matches to several different limit orders, the LOBSTER data lists each separate
matching as a new line in the message and orderbook files, but with the same
time-stamp. Thanks to this extremely high time resolution, it is straightforward to
infer which LOB executions correspond to which market orders. Whenever this
happens, we batch these events together and sum the individual executed volumes
to recover the original market order.

Although the LOBSTER data reports the arrival of market orders that match
to hidden limit orders, it does not provide information about whether such orders
were to buy or to sell. Therefore, whenever we calculate statistics involving the
trade sign, we disregard market orders that only match to hidden limit orders,
because we are unable to allocate such orders a sign.

When analysing the LOBSTER data, we perform several checks for internal
consistency. For example, we confirm that the ask-price is always larger than
the bid-price, and that all changes to the LOB, as listed in the orderbook file,
correspond to the order flow described in the message file. In our pool of stocks,
we find fewer than ten stocks with any such inconsistencies during the whole of
2015. In each case, the number of inconsistencies never exceeds one per month.
Therefore, the LOBSTER database is of extremely high quality, easily rivalling the
databases used by the top financial institutions in the world. Nevertheless, to ensure
that these inconsistencies do not impact our results, we discard any inconsistent
data points from our analysis.

A.2 Laplace Transforms and CLT

Convolutions and Laplace transforms

Let us recall Equation (5.10), valid for V ≥ 1:

Φ(τ,V) =
∫ τ

0
dτ1λe−λτ1Φ(τ− τ1,V + 1)e−(μ+ν)τ1

+

∫ τ

0
dτ2(μ+ ν)e−(μ+ν)τ2Φ(τ− τ2,V − 1)e−λτ2 . (A.1)

Such equations are readily solved in Laplace space (with respect to τ). Recall that
the Laplace transform of Φ(τ,V) is given by

Φ̂(z,V) :=
∫ ∞

0
dτΦ(τ,V)e−zτ.
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Table A.1. The 120 small-, medium- and large-tick stocks that we include in our
sample, along with their mean price and mean bid–ask spread during 2015. The
stocks are ordered in ascending mean price.

ticker mean price mean spread
[$] [$]

AMD 2.33 0.0110
SIRI 3.87 0.0108
BAC 16.58 0.0124
AMAT 19.11 0.0116
FITB 19.81 0.0112
MU 20.71 0.0124
SYMC 22.57 0.0115
NVDA 23.04 0.0119
MAT 24.98 0.0120
ATVI 26.47 0.0121
GE 26.60 0.0123
CSCO 27.81 0.0113
TERP 28.23 0.0480
JD 29.34 0.0147
CA 29.72 0.0120
DISCA 30.51 0.0127
CSX 31.08 0.0123
FOX 31.21 0.0117
INTC 31.96 0.0116
PFE 33.70 0.0119
T 33.81 0.0116
VOD 34.55 0.0117
AMTD 35.48 0.0142
TMUS 35.96 0.0165
IBKR 37.11 0.0421
LMCA 37.94 0.0153
YHOO 38.20 0.0122
EBAY 38.33 0.0121
WFM 39.34 0.0133
MDLZ 40.48 0.0119
ORCL 40.64 0.0119
FAST 40.90 0.0140
LVNTA 41.00 0.0428
XLNX 43.63 0.0130
LLTC 44.34 0.0135
AAL 44.74 0.0156
MSFT 46.26 0.0118
LBTYK 47.06 0.0126
PAYX 48.91 0.0142
LBTYA 49.34 0.0154

ticker mean price mean spread
[$] [$]

SNDK 67.33 0.0287
CHRW 68.09 0.0291
CTXS 68.75 0.0304
NTRS 71.82 0.0292
VRSK 72.91 0.0408
DLTR 74.40 0.0257
MAR 75.55 0.0275
LRCX 76.06 0.0402
TROW 77.30 0.0280
ADBE 80.33 0.0243
CHKP 81.92 0.0405
XOM 82.49 0.0139
WDC 83.63 0.0428
FISV 83.70 0.0323
ADP 84.22 0.0230
WBA 85.01 0.0300
ESRX 85.93 0.0232
TSCO 87.30 0.0679
FB 87.53 0.0147
SWKS 88.38 0.0543
NXPI 90.60 0.0558
CME 93.65 0.0428
INTU 96.73 0.0422
INCY 100.40 0.1877
GILD 106.16 0.0258
EXPE 106.48 0.0746
QQQ 108.21 0.0124
SBAC 114.99 0.0811
BMRN 115.06 0.201
CELG 118.02 0.0549
AAPL 119.72 0.0138
VRTX 123.14 0.166
AVGO 124.10 0.085
NTES 127.10 0.295
MNST 135.37 0.118
HSIC 143.01 0.134
COST 147.31 0.052
ULTA 156.02 0.178
AMGN 157.73 0.080
JAZZ 165.30 0.407



A.2 Laplace Transforms and CLT 425

Table A.1. (cont.)

ticker mean price mean spread
[$] [$]

NDAQ 51.66 0.0213
C 53.28 0.0118
TXN 53.67 0.0124
CINF 53.97 0.0240
NCLH 54.32 0.0326
ADSK 55.53 0.0201
VIAB 55.93 0.0175
MYL 56.10 0.0232
KLAC 58.64 0.0234
CMCSA 58.90 0.0120
ADI 59.35 0.0194
PCAR 59.45 0.0177
QCOM 61.89 0.0125
SBUX 61.93 0.0151
CTSH 62.05 0.0166
CTRP 62.50 0.0687
JPM 63.58 0.0124
ROST 64.88 0.0281
CERN 66.15 0.0259
DISH 66.57 0.0421

ticker mean price mean spread
[$] [$]

ALXN 176.51 0.239
PNRA 179.54 0.276
CHTR 179.60 0.198
BIDU 187.66 0.144
NFLX 188.93 0.256
ILMN 189.26 0.254
LMT 202.74 0.0986
TSLA 227.40 0.214
ORLY 229.37 0.239
SHPG 230.84 0.315
EQIX 259.21 0.333
SHW 271.55 0.268
AGN 282.51 0.278
BIIB 344.48 0.394
AMZN 452.08 0.326
REGN 491.74 0.975
ISRG 505.92 0.989
GOOG 591.23 0.392
CMG 659.40 1.054
PCLN 1211.77 1.567

The Laplace transform of the first integral on the right-hand side of Equation (A.1)
reads

L1 =

∫ ∞

0
dτ

∫ τ

0
dτ1λe−λτ1Φ(τ− τ1,V + 1)e−(μ+ν)τ1e−zτ. (A.2)

Applying the change of variables τ1→ τ− τ1, this becomes

L1 =

∫ ∞

0
dτ

∫ τ

0
dτ1λe(λ+μ+ν)τ1Φ(τ1,V + 1)e−(z+λ+μ+ν)τ. (A.3)

Switching the two integrals, one obtains

L1 =

∫ ∞

0
dτ1

∫ ∞

τ1

dτλe(λ+μ+ν)τ1Φ(τ1,V + 1)e−(z+λ+μ+ν)τ. (A.4)

The inner integral can now be easily computed to yield

L1 =
λ

(z+λ+μ+ ν)

∫ ∞

0
dτ1Φ(τ1,V + 1)e−zτ1 =

λ

(z+λ+μ+ ν)
Φ̂(z,V + 1). (A.5)

The second integral of Equation (A.1) can be computed in a similar way, by
replacing λ with μ+ ν and V + 1 with V − 1. Ultimately, we obtain the following
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recursion equation for V ≥ 1:

Φ̂(z,V) =
λ

(z+λ+μ+ ν)
Φ̂(z,V + 1)+

μ+ ν

(z+λ+μ+ ν)
Φ̂(z,V − 1), (A.6)

which is exactly Equation (5.13). We may also consider the generating function in
V , defined as:

Φ̃(z,y) :=
∞∑

V=1

yVΦ̂(z,V). (A.7)

Multiplying both sides of Equation (A.6) and summing over V leads to:

y(z+λ+μ+ ν)Φ̃(z,y) = λ
[
Φ̃(z,y)− Φ̂(z,V = 1)

]
+ y2(μ+ ν)Φ̃(z,y), (A.8)

and hence a closed-form solution for Φ̃(z,y) as a function of y,

Φ̃(z,y) =
λΦ̂(z,V = 1)

y2(μ+ ν)− y(z+λ+μ+ ν)+λ
. (A.9)

Small-z Expansion of Laplace Transforms

Let Φ̂(z) :=
∫ ∞

0
dτΦ(τ)e−zτ be the Laplace transform of the probability density Φ

of some random variable τ. The k-th derivative of Φ̂(z) is

∂kΦ̂

∂zk
(z) =

∫ ∞

0
dτΦ(τ)

∂k

∂zk
e−zτ = (−1)k

∫ ∞

0
dττkΦ(τ)e−zτ. (A.10)

Therefore, its value at z = 0 is related to the kth moment of the distribution:

∂kΦ̂

∂zk

∣∣∣∣∣∣
z=0

= (−1)k
∫ ∞

0
dττkΦ(τ) = (−1)kE[τk]. (A.11)

In particular, Φ̂(0) = 1. The small-z expansion of lnΦ̂(z) defines the cumulants of
the distribution Φ. In particular:

lnΦ̂(z) =
z→0

Φ̂′(0)

Φ̂(0)
z+

1
2
Φ̂′′(0)Φ(0)− Φ̂′(0)2

Φ̂(0)2
z2 +O(z3). (A.12)

By using the moment expansion obtained above, one finally obtains

lnΦ̂(z) =
z→0
−E[τ]z+

1
2
V[τ]z2 +O(z3). (A.13)

Linearly Growing Cumulants and the Central Limit Theorem

Let Φ(τ,V) be the probability distribution of some random variable τ for some
parameter V (here, one can think of the distribution of first-hitting times given an
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initial queue volume V). Assume that Φ(z,V) can be written as φ(z)V . By using
ln Φ̂(z,V) = V lnφ(z), one finds that the nth cumulant cn(V) of Φ(τ,V) is equal to
V × cn(1).

Now assume that all cumulants are finite, and consider the rescaled random
variable τ̃ := τ−E[τ]√

V
, whose cumulants are c̃n(V) = V1−n/2cn(1). One can then see

that all cumulants of order n ≥ 3 tend to 0 when V→∞, which shows that τ̃ tends
to a Gaussian random variable with zero mean and variance c2(1).

Laplace Transform of Power-Law Distributions

Let us consider a probability distribution with a power-law tail for large arguments:

Φ(τ) =
A
τ1+μ
+ o(τ−2), (τ→∞), (A.14)

with 0 < μ < 1 (i.e. in the case where the mean value of τ is infinite). What is the
small-z behaviour of the Laplace transform Φ̂(z) in that case?

We first introduce an auxiliary function

F(τ) := Θ(τ− τ∗) A
τ1+μ

, (A.15)

where τ∗ is an arbitrary cut-off, below which F(τ)= 0. Then, the Laplace transform
Φ̂(z) can be rewritten as

Φ̂(z) :=
∫ ∞

0
dτe−zτΦ(τ),

= 1+
∫ ∞

0
dτ

[
e−zτ − 1

]
Φ(τ),

= 1+
∫ ∞

0
dτ

[
e−zτ − 1

]
[F(τ)+ (Φ(τ)−F(τ))] ,

where in the second line we have used the fact that
∫ ∞

0
dτΦ(τ) = 1. Let us now

analyse these different terms when z ↓ 0.
The first term I1 in the integral of the last line can be analysed at small z.

Changing variable from τ to u = zτ, one has∫ ∞

0
dτ

[
e−zτ − 1

]
F(τ) = Azμ

∫ ∞

zτ∗
du

e−u − 1
u1+μ

. (A.16)

Whenever 0<μ< 1, the integral over u is convergent both for u→∞ and for u→ 0
(note that e−u − 1 ≈ −u for u→ 0). Hence

I1 = AΓ[−μ]zμ +
A

1−μτ
∗1−μz+ o(z). (A.17)
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The second term I2 of the integral can be estimated by noting that, by construction,
Φ(τ)−F(τ) decays faster than τ−2, such that∫ ∞

0
dττ (Φ(τ)−F(τ)) = b (A.18)

is finite. Therefore, for z→ 0,∫ ∞

0
dτ

[
e−zτ − 1

]
(Φ(τ)−F(τ)) = −bz+ o(z). (A.19)

The small-z behaviour of Φ̂(z) is thus given by

Φ̂(z) = 1+AΓ[−μ]zμ +

(
A

1−μτ
∗1−μ − b

)
z+ o(z). (A.20)

Conversely, when the Laplace transform of a distribution behaves as 1 −Czμ for
small z and 0 < μ < 1, this means that the distribution itself decays as a power law
with exponent 1+μ.

The same analysis can be redone for n < μ < n+ 1, where n is an integer. The
result is

Φ̂(z) = 1+
n∑

k=1

(−1)k

k!
E[τk]zk +AΓ[−μ]zμ +O(zn+1). (A.21)

The special case where μ is an integer leads to extra terms containing lnz. For
example, when μ = 1,

Φ̂(z) = 1−Az lnz+O(z). (A.22)

A.3 A Propagator Model with Volume Fluctuations

How can volume fluctuations be included in the formalism developed in
Chapter 13? Since the volume of trades υ is broadly distributed, the impact of
trades could itself be a highly fluctuating quantity. We have seen in Section 11.3.2
that this is in fact not so, because large trade volumes mostly occur when a
comparable volume is available at the opposite-best quote, in such a way that the
impact of large trades is in fact quite similar to that of small trades. Mathematically,
we have seen that the average impact is a power-law function υζ , or perhaps a
logarithm logυ.

To keep calculations simple, let us postulate a logarithmic impact and a broad,
log-normal distribution of υ. More precisely, we assume that the volume υ ≥ υ0 is
such that:

P(u) =
1√

2πΣ2
e−

u2

2Σ2 , (A.23)
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where u := ln(υ/υ0). Assume also that the impact of a trade of sign ε and volume
υ is given by z = ε ln(υ/υ0). The resulting impact is then a zero-mean Gaussian
random variable, which inherits long-range autocorrelations from the sign process.

In line with Section 13.3, suppose now that only the surprise in u moves the
price. By construction, this ensures that price returns are uncorrelated. An elegant
way to write this mathematically is to express the (correlated) Gaussian variables
ut in terms of a set of auxiliary uncorrelated Gaussian variables ûm, through:

ut =
∑
m≤t

K(t−m)̂um, E[̂umûm+�] = δ�,0, (A.24)

where K(·) is a kernel solving the Yule–Walker equation such that the ut have the
required correlations:1

C(�) = E[utut+�] =
∑
m≥0

K(m+ n)K(m). (A.25)

In the case where C decays as c∞�−γ with 0 < γ < 1, it is easy to show that the
asymptotic decay of K(n) should also be a power law k∞n−δ with 2δ− 1 = γ and
k2∞ = c∞Γ[δ]/Γ[γ]Γ[1− δ]. Note that 1/2 < δ < 1.

Inverting Equation (A.24) then leads to

ûn =
∑
m≤n

Q(n−m)um, (A.26)

where Q is the matrix inverse of K, such that
∑�

m=0 K(� −m)Q(m) = δ�,0 for all �.
For a power-law kernel K(n) ∼ k∞n−δ, one obtains for large n

Q(n) ∼ (δ− 1)sinπδ/(πk∞)nδ−2 < 0. (A.27)

Note that whenever δ < 1, one can show that
∑∞

m=0 Q(m) ≡ 1.
When the um are known for all m ≤ t − 1, the corresponding ûm can also be

computed. The predicted value of the yet unobserved ut is then given by

Et−1[ut] =
∑
m<t

K(t−m)̂um, (A.28)

and the surprise in ut is simply

ut −Et−1[ut] = K(0)̂un. (A.29)

The generalisation of the price equation of motion (see Equation (13.22)) is
therefore

mt+1 −mt =G(1)K(0)̂ut + ξt, (A.30)

1 The following equation can be solved to extract K(�) from C(�), using the so-called Levinson–Durbin algorithm
for solving Toepliz systems; see, e.g., Percival, D. B. (1992). Simulating Gaussian random processes with
specified spectra. Computer Science and Statistics, 24, 534.
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which, again by construction, removes any predictability in the price returns. From
this equation of motion, one can derive G(�) and R(�).

From the expression of the ûs in terms of the us, one finds:

G(�) =G(1)K(0)
�−1∑
m=0

Q(m) = −G(1)K(0)
∞∑

m=�

Q(m). (A.31)

Using the asymptotic estimate of Q(·) given in Equation (A.27), we finally obtain

G(�) ∼�	1 G(1)
sin(πδ)K(0)

πk∞
�δ−1 := Γ∞�−β. (A.32)

Identifying the exponents leads to β=1−δ= (1−γ)/2, recovering Equation (13.17)
derived in Section 13.2.1. The quantity G(1), relating surprise in order flow to
price changes, measures the so-called “information content” of the trades. It can
be measured from empirical data using the above relation between prefactors.

Finally, from Equation (A.30), one computes the full impact function for all �:

R(�) = E[(mn+� −mn) · un] =G(1)K(0)2. (A.33)

This impact function is completely flat, independent of �, as in the simplified
MRR model described in Section 16.2.4. However, adopting the MRR framework
but assuming that the transaction price, rather than the mid-price, is impacted
by the surprise in υt, we find that the full impact function is again given by
Equation (16.22), R(�) =G(1)[1−C(�)], which now increases with �.

In summary, all the results obtained within the context of a volume-independent
impact and the DAR model can be extended to a model where log-volumes are
correlated Gaussian variables.

A.4 TIM and HDIM

TIM: Variogram

We give here the (rather ugly) explicit expressions for the variogram V(�) for the
TIM:

V(�) = Σ2�+
∑

0≤n<�

∑
π

Gπ(�− n)2P(π)+
∑
n>0

∑
π

[Gπ(�+ n)−Gπ(n)]2P(π)

+2
∑

0≤n<n′<�

∑
π,π′
P(π)P(π′)Gπ(�− n)Gπ′(�− n′)Cπ,π′(n

′ − n)

+2
∑

0<n<n′<�

∑
π,π′
P(π)P(π′)[Gπ(�+ n)−Gπ(n)]

[
Gπ′(�+ n′)−Gπ′(n

′)
]
Cπ,π′(n− n′)

+2
∑

0≤n<�

∑
n′>0

∑
π,π′
P(π)P(π′)Gπ(�− n)

[
Gπ′(�+ n′)−Gπ′(n

′)
]
Cπ′,π(n

′ + n), (A.34)
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where Σ2 is the variance of the public news term ξt, which is absent only when all
price-changing events are accounted for.

HDIM: Fitting the Influence Kernel

We give here an approximate method for fitting the influence matrix kernel κ.
Consider again the defining equation:

Δ(π∗, εt, t) = Δπ∗ +
∑
t1<t

∑
π1

I(πt1 = π1)κπ1,π∗(t− t1)εt1εt + ξ
′
t . (A.35)

Multiplying this equation by I(πt = π
∗) and averaging over t yields

〈Δ(πt, εt, t)I(πt = π
∗)〉t = Δπ∗P(π∗)+

∑
t1<t

∑
π1

κπ1,π∗(t− t1)Cπ1,π∗(t− t1). (A.36)

Multiplying Equation (A.35) by I(πt = π
∗)I(πt′ = π)εt′εt, with t′ < t, and again

averaging over t, yields a second equation:

〈Δ(πt, εt, t)I(πt = π
∗)I(πt′ = π)εt′εt〉t = Δπ∗P(π∗)P(π)Cπ,π∗(t− t′)

+
∑
t1<t

∑
π1

κπ1,π∗(t− t1)〈I(πt = π
∗)I(πt′ = π)I(πt1 = π1)εt1εt′ 〉. (A.37)

Note, however, that the last term includes a three-body correlation function, which
is difficult to estimate (except when t1 = t′). At this stage, we need to make some
approximation to estimate these higher-order correlations.2 We assume that all
three-body correlation functions can be factorised in terms of two-body correlation
functions. More precisely, for t1 � t′:

〈I(πt = π
∗)I(πt′ = π)I(πt1 = π1)εt1εt′ 〉 ≈ P(π∗)P(π1)P(π)Cπ1,π(t

′ − t1). (A.38)

This allows us to extract κπ,π∗ from a numerically convenient but approximate
expression:

〈Δ(πt, εt, t)I(πt = π
∗)I(πt−� = π)εt−�εt〉t

P(π∗)P(π)
= Δπ∗Cπ,π∗(�)+

+

′∑
n>−�

∑
π1

P(π1)κπ1,π∗(n+ �)Cπ1,π(n) + κπ,π∗(�)
〈I(πt = π

∗)I(πt−� = π)〉
P(π∗)P(π)

, (A.39)

where
∑′ indicates that the term n = 0 is skipped. Since the left-hand side of this

equation can be readily estimated from the data, one can use the last equation to
infer (approximately) the influence kernels.

2 Very recently, F. Patzelt has shown how to estimate these three-point correlation functions from data. See:
Patzelt, F., & Bouchaud, J. P. (2017). Nonlinear price impact from linear models. Journal of Statistical
Mechanics, 12, 123404.
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A.5 An Alternative Market-Making Strategy

The calculation given in Section 17.2 is based on the assumption that the
market-maker’s (MM) inventory follows an Ornstein–Uhlenbeck type of dynamics
driven by the order flow. This approach leads to interesting predictions, but it is
based on an uncontrolled approximation. To overcome this limitation, we present
an alternative argument. Let us consider the following simple MM strategy, where
the inventory ψt after trade t can only be ψt = 0 or ψt = ±1 (i.e. the MM can only
sell when he/she has bought, and vice-versa).

Recall that the sign of the tth trade is εt. In this simple MM strategy, this leads
to the following dynamical equation for ψt:

ψt = −(1−ψ2
t−1)εt +ψt−1

1− εtψt−1

2
. (A.40)

The first term of Equation (A.40) means that if the previous inventory was flat, the
next inventory becomes the opposite of the sign of the trade (i.e. selling to buyers
and vice-versa). The second term means that if the MM is, say, long one stock, the
inventory stays long one stock if there is a sell trade is coming, but becomes flat if
a buy trade is coming (in which case εtψt−1 = 1).

The trick now is to see that ψt can be rewritten as ψt = −θtεt with θt = 0 or 1.
Equation (A.40) then reads:

θt =

(
1− θt−1

2

)
+
θt−1

2
εtεt−1, (A.41)

which can be rewritten as

ψt = ηt(1−ψt−1); with ψt = 1− θt; ηt =
1
2

(1− εtεt−1), (A.42)

The explicit solution is thus simply

ψt = ηt − ηtηt−1 + ηtηt−1ηt−2 + · · · , (A.43)

from which one can compute the fraction of the time f the MM is either long or
short (i.e. f = 〈θ〉), since:

1− f = 〈ψt〉 = 〈ηt〉 − 〈ηtηt−1〉+ 〈ηtηt−1ηt−2〉+ · · · . (A.44)

The interpretation is quite clear: 〈ηt〉 is the probability that η is equal to 1, given by
(1−C(1))/2. The term 〈ηtηt−1 . . .ηt−k+1〉 is the probability that εt, εt−1, ... εt−k are
all of alternating sign. For the Markovian MRR model, this occurs with probability
((1−C(1))/2)k−1, so one gets

1− f =
1
2

(1−C(1))
1

1+ (1−C(1))/2
=

1−C(1)
3−C(1)

⇒ f =
2

3−C(1)
. (A.45)
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This approximation is actually numerically very good in practical cases even when
the sign evolution is not Markovian.

The total P&L of the MM is (minus) the sum over all trades of the price paid
times the variation of the position, i.e.:

G = −
T∑

t=1

(ψt −ψt−1) · (mt +
εt st

2
) ≈ −T

〈
(ψt −ψt−1) ·

(
mt +

εt st

2

)〉
, (A.46)

where st is the spread before the t-th trade. Using the evolution equation above,
one finds:

ψt −ψt−1 = −εt(1− ψ
2
t

2
)− ψt−1

2
, (A.47)

and thus, neglecting spread fluctuations and rearranging terms:

1
T
G = 〈ψt · (mt+1 −mt)〉+ s

2

〈(
1− 1

2
ψ2

t +
ψt−1εt

2

)〉
. (A.48)

The second term is clearly positive, and is the gain coming from the spread. The
first term is negative because if ψt = −1, then εt must have been +1, and the price
has on average gone up. Using the explicit solution for ψt, one finds:

〈ψt · (mt+1 −mt)〉 = −〈(ηt − ηtηt−1 + ηtηt−1ηt−2 + ....) · εt · (mt+1 −mt)〉 , (A.49)

which can be expanded as

〈ψt · (mt+1 −mt)〉 = −(1− 〈ηt〉) 〈εt · (mt+1 −mt)〉εtεt−1=1

−〈ηtηt−1〉 〈εt · (mt+1 −mt)〉εtεt−1=−1&εt−1εt−2=−1 (A.50)

+〈ηtηt−1ηt−2〉 〈εt · (mt+1 −mt)〉εtεt−1=−1&εt−1εt−2=−1&εt−2εt−3=−1 + · · · .
In general, this expression must be computed numerically. However, since the
probability of observing a strictly alternating series decreases quickly, keeping
only the first three or four terms is enough to retain good accuracy.

Alternatively, one can find a Markovian approximation for this term as well.
Indeed, for the Markovian MRR model, conditioning on past signs is irrelevant, so
all the quantities 〈εt · (mt+1 −mt)〉... are equal to R(1) := 〈εt · (mt+1 −mt)〉, hence the
above equation simplifies to

〈ψt · (mt+1 −mt)〉 = −(1− 〈ψt〉)R(1) = − fR(1). (A.51)

This leads to the following P&L of the MM:

1
T
G = − fR(1)+

s
2

(
1− f

2
+

〈
ψt−1εt

2

〉)
. (A.52)
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One can also obtain the following equalities:

〈εtψt〉 = − f ; (A.53)

〈ψtεt+1〉 = 2− 3 f ; (A.54)

〈ψt+1εt〉 = 1
2

(C(1)− 1) f −C(1); (A.55)

〈ψt+1ψt〉 = 2 f − 1. (A.56)

Note the second equality imposes f ≥ 1/3 and allows one to compute the average
gain of the MM:

1
T
G = − fR(1)+

s
2

(
1− f

2
+

2− 3 f
2

)
= − fR(1)+ s(1− f ). (A.57)

This result is quite transparent: since f is the fraction of the time the MM is either
long or short, he/she can only benefit from the bid–ask spread a fraction 1− f of
the time but suffers from adverse impact a fraction f of the time.

In the MRR model, one furthermore has: R(1) = (1−C(1))s/2 and f = 2/(3−
C(1)), so one finally finds that the gain of the MM is in fact exactly 0, as it
should be.

A.6 Acronyms, Conventions and Symbols

Acronyms

ARCH: Auto-Regressive Conditional Heteroskedasticity
ACF: Auto-Correlation Function
CIR: Cox–Ingersoll–Ross
CLT: Central Limit Theorem
DAR: Discrete Auto-Regressive
ECDF: Empirical Cumulative Density Function
FGLW: Farmer–Gerig–Lillo–Waelbroeck
FTT: Financial Transaction Tax
HDIM: History-Dependent Impact Models
HFT: High-Frequency Traders (or Trading)
IID: Independent Identically Distributed
LMF: Lillo–Mike–Farmer
LOB: Limit Order Book
LSE: London Stock Exchange
MLE: Maximum Likelihood Estimator (or Estimation)
MM: Market-Maker
MRR: Madhavan–Richardson–Roomans
MSD: Marginal Supply and Demand
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NYSE: New York Stock Exchange
ODE: Ordinary Differential Equation
P&L: Profits and Losses
PDE: Partial Differential Equation
PP: Point Process
PPP: Poisson Point Process
SD: Supply and Demand
TIM: Temporary Impact Model
TWAP: Time-Weighted Average Price
VAR: Vector Auto-Regressive
VWAP: Volume-Weighted Average Price
ZI: Zero-Intelligence

Conventions

Alice: an informed trader
Bob: a market-maker
∼ : scales as, of the order of
≈ : approximately equal to (mathematically or numerically)
� : approximately equal to (empirically)
∝ : proportional to
:= : equal by definition to
≡ : identically equal to
t′ ↑ t: limit as t′ tends to t from below
t′ ↓ t: limit as t′ tends to t from above
f (t) = limt′↓t f (t′)
f (t) = limt′↑t f (t′)
E[.]: mathematical expectation
〈.〉: empirical average
[x]: dimension of x
Φ̂: Laplace transform of Φ
Φ̃: generating function of Φ

Roman Symbols

A: generic constant
A: ask side of the LOB
a: ask-price
a(·): generic function
B: generic constant
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B: bid side of the LOB
b: bid-price
C(·): autocorrelation function (of returns, of the sign of the trades, etc.)
C : execution cost (or shortfall)
CA0: non-price-changing cancellation
CA1: price-changing cancellation
c(·): rescaled covariance
c∞: constant describing the asymptotic decay of the sign autocorrelation
D: diffusion coefficient
D(·): volume-dependent diffusion coefficient (queue models)
D(·): lag-dependent diffusion coefficient
D(p, t): demand curve
d: distance from the same-side best quote
d†: distance from the opposite-side best quote
F: drift
F(·): volume-dependent drift (queue models)
Ft: filtration at time t
F : scaling function
f : generic fraction, or participation rate
f (·): generic function, or generic distribution density
G(·): lag-dependent propagator
G1 :=G(1): lag-1 propagator
G0,G∗: impact parameters
G: gain (of a strategy)
g: feedback parameter in the Hawkes model
H(·): kernels in Hasbrouck’s model
h: position of an order in a queue (“height” of the order)
I: volume imbalance
I: impact of an order
I(Q,T ): impact of a metaorder of volume Q executed over time T
I: indicator function
i: generic integer index
J: exit flux (or current)
J : total reinjection current in an extended Fokker–Planck equation
j0 := Q/T : trading intensity
j(·): volume per unit time sent to the market (or trading rate)
K(·): discrete derivative of the propagator G(·)
K(·): DAR kernel
k: generic integer
L: liquidity parameter in the square-root law/latent liquidity model
L (t): the state of the limit order book at time t
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L: likelihood function
LO0: non-price-change limit order
LO1: price-changing limit order
�: discrete time lag
�i: size of the ith gap in the LOB
MO0: non-price-changing market order
MO1: price-changing market order
M: total market capitalisation
m: mid-price
N: generic integer (number of agents, number of trades, number of events, etc.)
n: generic integer
P(·): probability distribution
Pst.(·): stationary probability distribution
P[.]: probability of the event
p: generic price
pF: fundamental price
p̂: predicted price
p∗: Walrasian auction price
p+: probability that the ask-queue empties first, or probability that the next trade

is a buy
p−: probability that the bid-queue empties first, or probability that the next trade

is a sell
Q: total volume of a metaorder
q: partial volume of a metaorder executed so far
R(x, t): “reaction term”, between buy and sell orders
R: response function
R0: response function of a non-price-changing market order
R1: response function of a price-changing market order
Rφ: response function of a market order consuming more than a fraction φ of the

volume at best
R: aggregate impact
r: generic ratio
rt: price change between t and t+ 1
S : size of a family in a branching process
S (·): return response function
S(p, t): supply curve
s: bid–ask spread
T : time horizon (execution time, etc.)
Tm: memory time
T1: first-hitting time
t: time
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U: utility function
U(·): generic function
u := V/V̄: queue volume rescaled by its average value
u,v, x,y: generic variables
V+(p): volume in the buy order book at price p
V−(p): volume in the sell order book at price p
V: total volume in a queue
Va,b: volume at ask (respectively, bid)
V∗: most probable volume in a queue/volume cleared in an auction
V̄: average volume in a queue
VT : total exchanged volume within a time interval T
V: price variogram
V[.]: variance operator
υ: volume of a single order
υ0: elementary volume (or lot size)
υt: volume of a single transaction at time t
vt := εtυt: signed volume of an order at time t
W(t): Wiener noise
W±: hopping rate in queue models
W(·): effective “potential”
w: generic width
wi: financial weight of agent i
x := (εx, px,υx, tx): order specification
Y: numerical prefactor of the square-root law
Y: scaling function
Z: normalisation
z: Laplace variable

Greek Symbols

α: parameter often associated to a decay, or to the strength of a predictor
β: exponent describing the decay of the propagator, or of a kernel
βi: response of agent i to news
Γ[.]: Gamma function
Γ: risk-aversion parameter
Γ∞: constant describing the asymptotic decay of the propagator
γ: exponent describing the decay of the autocorrelation of signs
δ: exponent describing the dependence of impact on volume; or difference

between the price and the fundamental price; or inter-arrival times
δ ·: difference
δ(·): Dirac delta-function
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Δ: step size (gap in the LOB), or implementation shortfall
Δ ·: difference
ε: small quantity
ε: sign of a transaction
ε̂: predicted sign of a transaction
ε†: sign of the “side” of an event (bid or ask)
ζ: generic exponent or generic Lagrange parameter
η: Ornstein–Uhlenbeck noise
θ: polar angle; or binary variable: θ = 0,1
θ: set of parameters of a model
Θ: Heaviside function, Θ(x) := x+

ϑ: tick size (absolute)
ϑr: relative tick size
κ: decay rate, or inverse relaxation time
κπ,π′(·): kernels in HDIM models
Λ: Kyle’s impact parameter
λ: deposition rate
μ: market order rate or exponent describing the power-law tail of return

distributions
Ξ: filter kernel
ξ: IID random noise
Π: probability of a sweeping market order
π: type of event
�: transaction cost or rebate
ρ: correlation coefficient, or autoregression parameter
ρ±(p, t): marginal supply and demand curves
�(·): distribution of initial volumes
Σ: generic root-mean-square (news term, volume of noise traders, etc.)
σ: volatility, or root-mean-square
στ or σ(τ): volatility on scale T
σF: volatility of the fundamental price
ς: skewness
τ: time lag
τliq: time for liquidity to refill
Φ(τ,V): probability of first-hitting time for a queue of size V
Φ(u): Hawkes kernel
φ: probability, fraction, or rate
φ0: refill probability after depletion
φk(·): auxiliary function
ϕ: rate per unit time (e.g. of Poisson events)
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χ: generic exponent or constant
χ(·): auxiliary function
Ψ: kernel of the generalised Hawkes model; or correlation-induced contribution

toV in the propagator model
ψ: angle, or position of the market-maker
Ω,ω: inverse time scales (rates)
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Words with an asterix are too frequent to be exhaustively referenced in the Index. Only the first page where they
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adverse selection, 14, 18, 46, 61, 214, 290, 293, 295,
299, 300, 303, 308, 312, 322, 329, 394, 396–398,
401, 407, 410, 413

aggressiveness, 189
Almgren–Chriss optimal schedule, 201, 390
anchoring, 371
ask-price , 47
asymmetric dynamical liquidity, 222, 282
auction price, 56, 343, 345, 348
autocorrelation function, 25, 187–189, 194, 251, 260,

261, 265, 271, 323, 324

Bayes’ theorem, 292
bid–ask bounce, 27, 311, 397
bid–ask spread, 13, 47, 61, 65, 69, 101, 134, 142, 143,

148, 150, 151, 180, 214, 242, 280, 281, 298, 299,
302, 303, 305, 310–312, 384, 394, 398, 406, 410,
414–416

bid-price , 47
bifurcation, 374
Boltzmann–Gibbs measure, 106, 109, 129
branching process, 172
branching ratio, 168, 169, 172
break-even condition, 300, 307, 326
business time, 173
buy/sell symmetry, 128
buyer’s conundrum, 199

cancellation , 45
central limit theorem, 23, 31, 86
child order, 230
CIR process, 94
circuit breaker, 411
closing auction, 55, 56, 199
clustering, 29, 31, 165, 170, 173, 181, 187
clustering ratio, 165, 166, 170–172, 174, 179
conditional correlation, 190
continuous trading, 56
continuous-time double auction, 10, 349

continuum limit, 87, 88, 94–96, 102, 122, 151, 390,
400

counting increment, 164
counting process, 93, 164, 166, 167, 179
Cox process, 165
crowded trades, 412

demand curve, 7, 338, 345, 346, 361
deposition probability, 65
diffusion constant, 87, 96, 153
diffusion matrix, 128
direct trading cost, 384
discrete auto-regressive process, 193, 260
drift constant, 87
drift–diffusion equation, 87

effective potential energy, 97
effective propagator, 262
efficiency

fundamental, 35, 370
statistical, 35, 370

efficiency paradox, 188, 193, 249, 256
efficient market, 367, 369, 371, 372, 374, 375,

410
endogenous, 34, 166, 172, 384, 410, 419
equilibrium price, 35, 345
equilibrium size, 90, 94–96, 126
excess-trading puzzle, 367
excess-volatility puzzle, 34, 367–370
execution indicator, 321, 329
execution shortfall, 233, 241, 385, 390, 391, 393, 395
exit flux, 81–83, 89–91, 95, 96, 103, 106, 108
exogenous, 79, 163, 166, 167, 172, 173, 181, 182,

314, 341, 369
exponential tail, 180
ex-post regrets, 299, 309, 319

fair-pricing condition, 24, 242, 308, 352
fat tails, see heavy tails
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feedback loop, 22, 78, 123, 136, 409, 411, 412
first-hitting time, 83–86, 88, 91–93, 96, 107, 108, 121,

122, 126, 145
flash crash, 200, 357, 411, 414
flow field, 128, 130
Fokker–Planck equation, 87, 89, 94, 102, 104, 105,

107, 110, 128, 129, 400
fundamental analysis, 11
fundamental value, 33–35, 209, 366, 368–373, 409,

410, 412

gambler’s ruin, 125
gap-to-spread ratio, 143
Gaussian distribution, 28
Gaussian random walk, 23
generalised Hawkes process, 181
Glosten–Milgrom model, 242, 267, 295, 300, 302,

304, 306, 308, 309, 367, 416

Hawkes process, 166–169, 171–178, 180, 181, 183,
188, 193, 194

HDIM, see history-dependent impact model
heavy tails, 29, 180, 183
hedging, 13, 22, 24, 411
herding, 193, 197
heterogeneous agents, 341
high-frequency noise, 26, 27, 374
high-frequency trading, 12, 178, 363, 407
history-dependent impact model, 259, 282

idiosyncratic noise, 340, 373
imbalance

order-flow, 15, 209, 222, 239, 263, 290
order-sign, 191
queue, 119, 126

impact
after-effects, 233
aggregate, 222, 224, 232, 239, 261, 263, 264
cost, 208, 214, 294, 362, 384, 386, 388, 391, 393
cross-, 284
decay, 267, 274, 308, 322, 358, 359, 370, 388
history-dependent, 259, 282
lag-1 unconditional, 213
lag-dependent, 146
linear, 293, 344
metaorder, 232, 233, 235, 240
observed, 211, 253
path, 232
peak, 232, 234, 238, 239, 241, 264, 265, 308, 358
permanent component, 233, 237, 238
prediction, 211, 233, 238
price, 12, 16, 34, 49, 61, 192, 208, 209, 213, 215,

222, 229, 249, 251, 258, 266, 282, 290, 293,
294, 337, 341, 344, 348, 359, 362, 368, 386

reaction, 210, 211, 216, 253, 283
semi-permanent, 257
square-root law, 234, 237–239, 241, 265, 308, 349,

357, 358, 392
transient, 233, 252, 282

indirect trading cost, 384

information content, 12, 209, 261, 283, 306, 309, 369
information leakage cost, 200
informed trader, 11, 14, 18, 33, 290, 293, 294, 300,

302, 303, 306, 371, 413
inhibitory effects, 181
inside trader, 11–13, 15, 290, 292, 294
inter-arrival time, 164, 171, 187
inter-market contagion, 412
intermittent process, 163
intra-day pattern, 59, 110, 163, 174
inventory control, 323, 324, 326, 327

kernel
exponential, 170, 171, 174, 176
influence, 166, 179, 281
power-law, 171, 172, 175, 177–180

Kramers–Moyal expansion, 105
Kyle model, 223, 233, 240, 241, 290, 293, 294, 299,

300, 303, 306, 344, 367, 368, 372, 393
Kyle’s lambda, 223, 264, 292, 293, 295, 343, 344, 348

Laplace transform, 84, 88, 92, 93, 152, 171
Laplace’s equation, 122
latent liquidity, 18, 237, 337, 338, 354, 356, 362, 392,

411, 415
leverage effect, 31
limit order book, see LOB
limit order , 45
liquidity

crisis, 200, 305
memory time, 236
provider, 10, 13, 17, 18, 44, 61, 68, 135, 145, 193,

242, 258, 279, 298, 367, 370, 406, 410, 412,
413

provision, 6, 46, 415
ratio, 236
refill, 279
taker, 10, 15, 44, 63, 68, 258, 298, 300, 406, 415

LOB , 44
long memory, 30, 32, 187, 188, 192, 194, 240, 251,

254, 256, 370
long-range correlation, 31, 134, 142, 180, 310
long-range resilience, 254, 360
lot size, 48, 135, 138, 306, 350

Madhavan–Richardson–Roomans model, see MRR
model

marginal supply and demand curves, see MSD curves
marked-to-market, 321, 362, 412, 418
market activity, 31, 34, 49, 59, 61, 163, 180, 181, 183,

187, 369
market breakdown, 304, 410, 413, 416
market clearing, 9, 291, 295, 338, 339, 342, 344, 350,

355, 415
market ecology, 10, 13, 14, 35, 291, 407
market efficiency, see efficient market
market friction, 384
market order

aggressive, 217, 282, 329
non-aggressive, 217

market order , 45
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market-maker, 8, 10, 13, 14, 16, 44, 192, 214, 242,
290, 293, 299, 304, 308, 319, 322, 326, 327, 356,
372

martingale, 12, 23, 211, 242, 259, 266, 295, 305, 306,
309, 319, 366, 369, 371, 387, 391, 395–397

maximum-likelihood estimation, 175
mean-reversion, 12, 27, 34, 35, 130, 145, 147, 152,

311, 323, 325, 326, 344, 369, 371, 374, 396, 397
metaorder, 195, 198–200, 229–232, 237, 238, 240,

241, 264, 265, 306, 338, 344, 354–356, 358, 359,
386, 390, 393

method of characteristics, 400
method of images, 153
method of moments, 178
microstructure noise, 27
mid-price , 47
MRR model, 260, 309–313, 326, 327
MSD curves, 339, 340, 342, 344, 347, 348, 350, 356,

357

no ex-post regrets, 299, 309, 319
no-trade theorem, 367
noise trader, 290, 291, 293, 303, 367, 371

opening auction, 56, 199
opportunity cost, 391, 394, 397, 398, 401
optimal execution, 78, 242, 362, 385, 391–393, 401
order , 45
order-splitting, 193, 202
Ornstein–Uhlenbeck process, 31, 107, 324

P&L, 16, 24, 302, 321, 323, 324, 326, 327, 390
perfect rationality, see rationality
point process, 164–167, 175
Poisson process

homogeneous, 164, 165, 170, 173, 179, 187, 209
inhomogeneous, 165, 166

price discovery, 209
price feedback, 183
price formation, 28, 44, 58, 209, 283, 371
price manipulation, 362
priority

price-time, 54
pro-rata, 54

propagator model, 193, 249, 255, 257, 259–264, 266,
270–272, 275, 281, 283, 308–311, 314, 358, 360,
362, 370, 372, 386, 393

propagator , 252

quantitative analysis, 12
quasi-equilibrium, 91, 96
queue position, 59, 329, 397, 398, 401
quoting, 9

rationality, 79, 409
reinjection current, 81
rescaled volume, 111, 112, 128
reserve price, 338, 341, 344
response function, 215, 250, 253, 257, 261, 271–275,

282, 283, 309, 310, 312, 322, 328, 417

revealed liquidity, 18
risk aversion, 390

Santa Fe model, 136, 140–143, 145, 146, 148, 152,
209, 233, 240, 294, 340, 341, 357, 372

scale invariance, 111, 119
scaling law, 223
selective liquidity taking, 217, 218, 222, 224
self-excitation, 33, 166, 181
self-fulfilling state, 374
self-impact, 284
self-referential effect, 371, 373
seller’s conundrum, see buyer’s conundrum
shortfall variance, 390
sign surprise, 259, 309, 311
sign-return correlation, 254
signature plot, 25, 27, 28, 30, 34, 35, 142, 145, 148,

250, 271, 275, 282, 294, 369, 370, 374
signed-event correlation function, 273
skewness, 17, 46, 299, 302
slippage, 233, 241, 385, 386, 395
specialist, see market-maker
spread distribution, 62, 143
stationary solution, 81, 82, 89, 95, 109, 150, 355
stationary state, 81, 83, 91, 95, 107, 110, 129, 138,

167, 168, 172, 194, 343, 357
step size, 277
stop-loss strategy, 411
Student’s t distribution, 29
stylised fact, 22, 58, 79
supply curve, 7, 338, 345
surprise, 259

tail parameter, 29
terminal time, 299
termination rate, 195
tick size, 24, 48, 61, 65, 69, 71, 101, 109, 148, 152,

239, 320, 350, 366, 385, 407, 412, 416, 417
TIM, see transient impact model
time-reversal symmetry, 273
Tobin tax, 416
trade sign, 16, 209
trading intensity, 359, 388, 393
transient impact model, 252, 282
transition rate, 90
trend-following, 367, 410
TWAP, 201

U-shape profile, 61
uninformed trader, 11
universality, 29, 417

variational calculus, 388
variogram, 24, 30, 192, 215, 251, 253–255, 274
vector autoregressive model, 261
volatility, 13, 24, 27, 30, 31, 34, 35, 59, 102, 142, 145,

163, 180, 199, 234, 236, 237, 251, 256, 257, 271,
275, 279, 294, 299, 301, 302, 306, 311–313, 340,
349, 356, 359, 368, 369, 372, 374, 385, 390,
407, 416
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volume profile, 50, 51, 68, 135, 139, 152, 153,
237, 351

VWAP, 201

Walrasian auction, 6, 343

Wiener–Hopf equation, 179, 182

Yule–Walker equation, 169, 179, 194, 260

zero-intelligence, 79, 136, 209, 233
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